779 research outputs found

    Paul and Moses in 2 Corinthians 3: Hermeneutics from the top down

    Get PDF
    This chapter discusses Paul\u27s argument in his discussion of the new covenant in 2 Corinthians 3 and how it is difficult for any reader to understand due to various reasons including that the flow of Paul\u27s argument not being immediately transparent

    The Identity of the I in the Confessions of Jeremiah

    Get PDF
    Contents: 1. Introduction 2. The \u27gattung\u27 of the confessions of Jeremiah: lawsuits 3. The \u27gattung\u27 of the confessions: individual laments 4. Theological development in the confessions 5. The confessions in context 6. Summary and conclusion Appendices: 1. Vocabulary distribution in the confessions 2. A note on two relevant issues in the Psalms

    Combined Reversed Phase HPLC, Mass Spectrometry, and NMR Spectroscopy for a Fast Separation and Efficient Identification of Phosphatidylcholines

    Get PDF
    In respect of the manifold involvement of lipids in biochemical processes, the analysis of intact and underivatised lipids of body fluids as well as cell and tissue extracts is still a challenging task, if detailed molecular information is required. Therefore, the advantage of combined use of high-pressure liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy will be shown analyzing three different types of extracts of the ubiquitous membrane component phosphatidylcholine. At first, different reversed phase modifications were tested on phosphatidylcholines (PC) with the same effective carbon number (ECN) for their applicability in lipid analysis. The results were taken to improve the separation of three natural PC extract types and a new reversed phase (RP)-HPLC method was developed. The individual species were characterized by one- and two-dimensional NMR and positive or negative ion mode quadrupole time of flight (q-TOF)-MS as well as MS/MS techniques. Furthermore, ion suppression effects during electrospray ionisation (ESI), difficulties, limits, and advantages of the individual analytical techniques are addressed

    Unraveling local tissue changes within severely injured skeletal muscles in response to MSC-based intervention using MALDI Imaging mass spectrometry

    Get PDF
    Pre-clinical and clinical studies are now beginning to demonstrate the high potential of cell therapies in enhancing muscle regeneration. We previously demonstrated functional benefit after the transplantation of autologous bone marrow mesenchymal stromal cells (MSC-TX) into a severe muscle crush trauma model. Despite our increasing understanding of the molecular and cellular mechanisms underlying MSC's regenerative function, little is known about the local molecular alterations and their spatial distribution within the tissue after MSC-TX. Here, we used MALDI imaging mass spectrometry (MALDI-IMS) in combination with multivariate statistical strategies to uncover previously unknown peptide alterations within severely injured skeletal muscles. Our analysis revealed that very early molecular alterations in response to MSC-TX occur largely in the region adjacent to the trauma and only to a small extent in the actual trauma region. Using "bottom up" mass spectrometry, we subsequently identified the proteins corresponding to the differentially expressed peptide intensity distributions in the specific muscle regions and used immunohistochemistry to validate our results. These findings extend our current understanding about the early molecular processes of muscle healing and highlights the critical role of trauma adjacent tissue during the early therapeutic response upon treatment with MSC

    Identification of a Cyanine-dye labeled peptidic ligand for Y₁R and Y₄R, based upon the Neuropeptide Y C-terminal analogue, BVD-15

    Get PDF
    Traceable truncated Neuropeptide Y (NPY) analogues with Y₁ receptor (Y₁R) affinity and selectivity are highly desirable tools in studying receptor location, regulation, and biological functions. A range of fluorescently labeled analogues of a reported Y₁R/Y₄R preferring ligand BVD-15 have been prepared and evaluated using high content imaging techniques. One peptide, [Lys²(sCy5), Arg⁴]BVD-15, was characterized as an Y₁R antagonist with a pKD of 7.2 measured by saturation analysis using fluorescent imaging. The peptide showed 8-fold lower affinity for Y₄R (pKD = 6.2) and was a partial agonist at this receptor. The suitability of [Lys²(sCy5), Arg⁴]BVD-15 for Y₁R and Y₄R competition binding experiments was also demonstrated in intact cells. The nature of the label was shown to be critical with replacement of sCy5 by the more hydrophobic Cy5.5 resulting in a switch from Y₁R antagonist to Y₁R partial agonist

    VEGFR-3 is expressed on megakaryocyte precursors in the murine bone marrow and plays a regulatory role in megakaryopoiesis

    Get PDF
    Introduction VEGFR-3 is a member of the VEGFR receptor tyrosine kinase family. It is expressed on lymphatic endothelial cells (LECs) and plays a central role in the regulation of lymphangiogenesis. 1 On binding to its ligands, VEGF-C and VEGF-D, VEGFR-3 is activated and orchestrates the outgrowth of lymphatic vessels. During murine hematopoiesis, Sca-1 ϩ hematopoietic stem cells give rise to the precursors of all hematopoietic lineages. 10 Megakaryocytes develop from CD34 ϩ progenitors. Methods Cell culture HEL cells were obtained from DSMZ and cultivated in RPMI (Gibco-BRL) containing 10% FCS and 1% penicillin-streptomycin. Differentiation was induced with 10nM tetradecanoyl phorbol acetate (TPA; Sigma-Aldrich). Primary human microvascular LECs (Cambrex) from the dermis (HMVECdLyNeo) were cultivated in EGM-2MV (Lonza) and 5% FCS supplemented with growth factors provided by the manufacturer. Bovine lymphatic endothelial cells were cultivated in DMEM (Gibco-BRL) containing 20% FCS and 1% penicillin-streptomycin on gelatin-coated plastic. HEK-293 cells were cultivated in DMEM supplemented with 10% FCS and 1% penicillin-streptomycin. Western blot analysis Cell lysates were analyzed using standard Western blotting techniques. The membranes were probed with Abs specific for VEGFR-3 (R&D Systems), CD31 (Santa Cruz Biotechnology), CD34 (Abcam), CD42a (Santa Cruz Biotechnology), CD61 (R&D Systems), CD144 (Santa Cruz Biotechnology), or GpA (International Blood Group Reference Laboratory). Probing with hypoxanthine phosphoribosyltransferase (HPRT) Abs (Santa Cruz Biotechnology) served as a loading control. PCR analysis RNA was prepared using peqGOLD RNAPure (PeqLab). Synthesis of cDNA using Superscript II (Invitrogen) was performed according to the manufacturer's recommendations. For PCR, cDNAs were amplified as follows: 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 90 seconds (VEGFR-2, Prox1, LYVE-1, Podoplanin, HPRT, Fli-1, Fog-2, Gata-2, and Elf-1) or 94°C for 30 seconds, 54°C for 30 seconds, and 72°C for 90 seconds (VEGFR-3). Details of the primers used are in supplemental Methods (available on the Blood Web site; see the Supplemental Materials link at the top of the online article). Tubule formation on collagen gels Collagen type 1 was prepared from rat tails. Tendons were isolated, dissolved in acetic acid, then filtered, lyophilized, and redissolved in 0.1% acetic acid at 4 mg/mL. Cells were seeded on collagen gels (2 mg/mL) and cultured in the presence of 30 ng/mL of VEGF 165 (Promokine) for 8 days. Tubule formation was analyzed as described previously. 22 Immunohistochemistry For the immunohistochemical analysis of VEGFR-3 expression in the BM, cryosections of decalcified murine femurs embedded in tissue-freezing medium (Leica) were fixed in acetone and stained with VEGFR-3 Abs (eBiosciences). The stained sections were then analysed at room temperature using an Axioskop (Zeiss) equipped with a PlanNeoflur 20ϫ/0.50 and an Axiocam (Zeiss) and Axiovision software (Ziess). MACS BM cells isolated from femurs and tibias of C57BL/6 mice were treated with Fc-block (BD Biosciences) and then incubated with Abs against VEGFR-3 (R&D Systems), Sca-1, CD41, or CD38 (BD Biosciences), followed by specific secondary MACS Abs (Miltenyi-Biotec) according to the manufacturerЈs recommendations. Cell populations were then either enriched or depleted for the labeled epitope using LS or LD columns (Miltenyi-Biotec), respectively. The purity of the sorted populations was controlled by flow cytometry. CD42 FACS BM was isolated from femurs and tibias of C57BL/6 mice and stained with Abs specific for VEGFR-3 (R&D Systems) and/or CD42a (Emfret) and analyzed by FACS. Lethal irradiation and BM transplantation C57BL/6 mice were irradiated with lethal doses (9 Gy) from a ␥ source. After 24 hours, the mice were all transplanted in parallel by IV injection with either complete BM, BM depleted of VEGFR-3 ϩ cells, or BM mock depleted with an appropriate isotype control using MACS. EDTA blood samples were taken from all animals on days 0, Isolation and culture of primary murine BM cells BM was isolated from femurs and tibias of C57BL6 mice. After lysis of RBCs with ammonium-chloride-potassium buffer, the cells were transferred to IMDM (Gibco-BRL) supplemented with 1% penicillin/streptomycin, 10% HEK-293 cell-conditioned DMEM, Nutridoma SP (Roche), L-glutamine, and 100 pg/mL of recombinant murine TPO (RDI Diagnostics). Depending on the experiment, the cells were cultured with either 100 g/mL of mF4-31C1 VEGFR-3-blocking Abs (kindly provided by ImClone Systems), 100 g/mL of rat IgG isotype control, or 400 ng/mL of VEGF-C-Cys, a mutant form of VEGF-C that activates VEGFR-3 but not VEGFR-2. Long-term injections C57BL/6 mice were injected daily with 25 g of VEGF-C-Cys for 3 weeks. Blood was taken on days 0, 3, 7, 10, 14, 17, and 21. In the blocking Ab experiments, mice were injected with 600 g/animal/injection of mF4-31C1 VEGFR-3-blocking Ab, isotype control Ig, or PBS on a MondayWednesday-Friday schedule for 6 weeks. Blood was taken on days 0, Recovery kinetics after sublethal irradiation Experimental C57BL/6 mice were sublethally irradiated (4.5 Gy) in a ␥ source. They were then either injected daily with VEGF-C-Cys (25 g/animal/injection) or PBS or were intraperitoneally injected with 600 g/animal/injection of mF4-31C1 VEGFR-3-blocking Abs, isotype control Ig, or PBS every other day. Blood was taken on days 0, 7, 11, 14, 18, and 21 after irradiation and analyzed. In each experiment, all animals were treated at the same time and on the same day and all animals were bled at each time point. BM was isolated from femurs and tibias 20 days after irradiation, and the number and ploidy of CD41 ϩ cells in the BM was assessed. Significance was tested using 2-tailed unpaired t tests assuming equal variance. TPO administration C57BL/6 mice were administered with 5 g of recombinant murine TPO (RDI), followed by daily injections of either 25 g of VEGF-C-Cys or PBS. One group received only PBS throughout. Blood was taken and analyzed 0, 3, 5, 7, and 10 days after TPO administration. All animals were treated at the same time and on the same day and all animals were bled at each time point. After 10 days, the animals were killed and the number and ploidy of CD41 ϩ 1900 THIELE et al BLOOD, 30 AUGUST 2012 ⅐ VOLUME 120, NUMBER 9 For personal use only. on October 6, 2016. by guest www.bloodjournal.org From cells in the BM was assessed. Significance was tested using 2-tailed unpaired t tests assuming equal variance. 5-FU treatment C57BL/6 mice were intraperitoneally injected with a single dose of 5-FU (Sigma-Aldrich) at 150 mg/kg. Control mice remained untreated. The 5-FU-treated mice then received daily injections of either 25 g of VEGF-C-Cys or PBS throughout the experiment. Blood was taken and analyzed 0, All animal experiments were approved by the local regulatory authorities and were performed according to German legal requirements. Results Expression of VEGFR-3 and other lymphatic endothelial markers is up-regulated on phorbol diester-induced megakaryocytic differentiation of HEL cells VEGFR-3 is widely used as a marker for lymphatic endothelium. Originally, however, the receptor was cloned from the HEL cell line. 7 This cell line can be induced to differentiate into the erythrocyte lineage by EPO treatment 23 and into the megakaryocyte lineage in response to TPA. Consistent with the notion that HEL cells differentiate into the megakaryocyte lineage on TPA treatment, we detected strong up-regulation of several markers and transcription factors associated with megakaryocytic differentiation A survey of the literature revealed that virtually all markers described to date as being expressed on megakaryocytes can also be expressed on endothelial cells (supplemental These observations raised the question of whether HEL cells really undergo megakaryocytic differentiation after TPA treatment or if they adopt an endothelial phenotype with LEC characteristics. To address this point, we investigated whether TPA-treated HEL cells are capable of forming capillaries, reasoning that if the cells differentiated into endothelial cells, this should be the case. However, in contrast to control bovine LECs, TPA-treated HEL cells could not be induced to form capillaries VEGFR-3 IN MEGAKARYOPOIESIS 1901 BLOOD, 30 AUGUST 2012 ⅐ VOLUME 120, NUMBER 9 For personal use only. on October 6, 2016. by guest www.bloodjournal.org From VEGFR-3 is expressed on megakaryocytic progenitors through to the promegakaryoblast stage in the BM The up-regulation of VEGFR-3 during HEL cell megakaryocytic differentiation suggested to us that VEGFR-3 may play a role in megakaryopoiesis. Because of the limited megakaryocytic differentiation capacity of HEL cells and their cancerous nature, we explored this possibility further using murine BM. First we characterized VEGFR-3 expression in the BM. FACS staining revealed that approximately 2% of murine BM cells were VEGFR-3 ϩ ( To define further the stages of megakaryopoiesis during which VEGFR-3 is expressed, costainings with the stem cell marker Sca-1 and with CD38, CD41, and VEGFR-3 were performed. Expression of Sca-1 is lost during myeloid differentiation. 25 CD38 expression, in turn, is increased early in megakaryopoiesis from the BFU-MK stage on. These observations suggested to us that VEGFR-3 might be expressed on hematopoietic stem cells through to the promegakaryoblast stage. However, Sca1 is not just expressed on hematopoietic stem cells, but also on the immediate progenitors arising from the stem cells. These data are consistent with the notion that VEGFR-3 is not expressed on hematopoietic stem cells, but rather on megakaryocyte precursors through to the premegakaryoblast stage, and that VEGFR-3 expression is lost as megakaryocytes further mature. This notion is further substantiated by the observation that VEGFR-3 ϩ BM cells coexpressed CD42, a marker for megakaryocytes that is not expressed on hematopoietic precursor cells (supplemental Manipulation of VEGFR-3 influences megakaryopoiesis in vitro To examine the role that VEGFR-3 plays during megakaryopoiesis, we cultivated primary murine BM cells with physiologic concentrations of TPO to maintain the megakaryocyte precursors. The cells were grown for 3 days in the presence or absence of VEGF-C-Cys, a mutant form of VEGF-C that specifically activates VEGFR-3 but not VEGFR-2, 20 because VEGFR-2 is also present on megakaryocytic cells. Our data suggest that the specific activation of VEGFR-3 during megakaryopoiesis impairs the transition to polyploid stages, whereas blocking the receptor promotes differentiation and endoreplication. For personal use only. on October 6, 2016. by guest www.bloodjournal.org From Neither activation nor blocking of VEGFR-3 influences steady-state megakaryopoiesis or thrombopoiesis in vivo To study the potential effects of VEGFR-3 manipulation on megakaryopoiesis and thrombopoiesis in vivo, we first injected VEGF-C-Cys to activate VEGFR-3, or PBS as a control, into mice on a daily basis for 3 weeks. Thrombocyte concentrations in the blood were monitored regularly. After 3 weeks of treatment, the mice were killed. BM cells were isolated and stained for CD41 and DNA content to evaluate the number and ploidy of the CD41 ϩ population. We observed a significant decrease in apoptotic CD41 ϩ BM cells in the VEGF-C-Cys-treated group (P Ͻ .01), a trend toward reduced polyploidy, and an increase in 2n CD41 ϩ cells, which were consistent with our in vitro observations. VEGF-C-Cys had no effect on platelet counts or the number of CD41 ϩ cells in the BM (supplemental To determine the effect of inhibiting VEGFR-3 activation on megakaryopoiesis and thrombopoiesis in vivo, mice were injected daily with VEGFR-3-blocking Abs or an appropriate isotype control for 6 weeks. Platelet counts were monitored regularly and the numbers and ploidy distribution of CD41 ϩ BM cells were analyzed at the end of the experiment. Under these conditions, no effects on the measured parameters were observed (supplemental Activation of VEGFR-3 increases platelet counts in TPO-stimulated animals, modulates 5-FU-induced thrombocytopenia and thrombocytosis, and influences ploidy distribution and numbers of CD41 ؉ BM cells after sublethal irradiation Thrombocyte homeostasis is tightly controlled in mammals, and alternative mechanisms exist that can compensate for perturbation . FACS analysis showed that 1.85% Ϯ 0.31% SEM (n ϭ 9) of the murine BM cells expressed VEGFR-3. Dot plots of 1 representative experiment are depicted. Density plots were used to define a region in which 95% (the 2 outer contours) of the negative control events were excluded. The region was then applied to a plot displaying the stained sample. The number of positive events in both the negative control and the actual sample was then assessed. The percentage of true positive cells was calculated by subtraction of the number of events in the negative control within the defined region from the number of events found in the same region for the actual sample. Identical numbers of events were acquired. (B) VEGFR-3 is expressed on isolated mononuclear cells in the murine BM. Sections of murine femurs were stained with VEGFR-3-specific Abs (left panel, VEGFR-3; right panel, control). MK indicates megakaryocyte. Scale bars indicate 100 m. (C) Ploidy of VEGFR-3 ϩ cells in the murine BM. VEGFR-3 ϩ BM cells were enriched by MACS and then analyzed in FACS. As a control, cells were treated with an appropriate isotype control. Clumping cells mimicking polyploidy were excluded from the analysis by appropriate gating strategies. The resulting histogram plot shows the DNA content of VEGFR-3 ϩ cells. Dot plots of the DNA content of the cells were used for the quantification of VEGFR-3 ϩ and isotype-treated cells within different ploidy classes or cell cycle stages, respectively (a detailed scheme of the gating strategy is provided in supplementa

    Global FKRP Registry: observations in more than 300 patients with Limb Girdle Muscular Dystrophy R9

    Get PDF
    Objective The Global FKRP Registry is a database for individuals with conditions caused by mutations in the Fukutin‐Related Protein (FKRP) gene: limb girdle muscular dystrophy R9 (LGMDR9, formerly LGMD2I) and congenital muscular dystrophies MDC1C, Muscle–Eye–Brain Disease and Walker–Warburg Syndrome. The registry seeks to further understand the natural history and prevalence of FKRP‐related conditions; aid the rapid identification of eligible patients for clinical studies; and provide a source of information to clinical and academic communities. Methods Registration is patient‐initiated through a secure online portal. Data, reported by both patients and their clinicians, include: age of onset, presenting symptoms, family history, motor function and muscle strength, respiratory and cardiac function, medication, quality of life and pain. Results Of 663 registered participants, 305 were genetically confirmed LGMDR9 patients from 23 countries. A majority of LGMDR9 patients carried the common mutation c.826C > A on one or both alleles; 67.9% were homozygous and 28.5% were compound heterozygous for this mutation. The mean ages of symptom onset and disease diagnosis were higher in individuals homozygous for c.826C > A compared with individuals heterozygous for c.826C > A. This divergence was replicated in ages of loss of running ability, wheelchair‐dependence and ventilation assistance; consistent with the milder phenotype associated with individuals homozygous for c.826C > A. In LGMDR9 patients, 75.1% were currently ambulant and 24.6%, nonambulant (unreported in 0.3%). Cardiac impairment was reported in 23.2% (30/129). Interpretation The Global FKRP Registry enables the collection of patient natural history data, which informs academics, healthcare professionals and industry. It represents a trial‐ready cohort of individuals and is centrally placed to facilitate recruitment to clinical studies.publishedVersio

    MOSAiC goes O2A - Arctic Expedition Data Flow from Observations to Archives

    Get PDF
    During the largest polar expedition in history starting in September 2019, the German research icebreaker Polarstern spends a whole year drifting with the ice through the Arctic Ocean. The MOSAiC expedition takes the closest look ever at the Arctic even throughout the polar winter to gain fundamental insights and most unique on-site data for a better understanding of global climate change. Hundreds of researchers from 20 countries are involved. Scientists will use the in situ gathered data instantaneously in near-real time modus as well as long afterwards all around the globe taking climate research to a completely new level. Hence, proper data management, sampling strategies beforehand, and monitoring actual data flow as well as processing, analysis and sharing of data during and long after the MOSAiC expedition are the most essential tools for scientific gain and progress. To prepare for that challenge we adapted and integrated the research data management framework O2A “Data flow from Observations to Archives” to the needs of the MOSAiC expedition on board Polarstern as well as on land for data storage and access at the Alfred Wegener Institute Computing and Data Center in Bremerhaven, Germany. Our O2A-framework assembles a modular research infrastructure comprising a collection of tools and services. These components allow researchers to register all necessary sensor metadata beforehand linked to automatized data ingestion and to ensure and monitor data flow as well as to process, analyze, and publish data to turn the most valuable and uniquely gained arctic data into scientific outcomes. The framework further allows for the integration of data obtained with discrete sampling devices into the data flow. These requirements have led us to adapt the generic and cost-effective framework O2A to enable, control, and access the flow of sensor observations to archives in a cloud-like infrastructure on board Polarstern and later on to land based repositories for international availability. Major roadblocks of the MOSAiC-O2A data flow framework are (i) the increasing number and complexity of research platforms, devices, and sensors, (ii) the heterogeneous interdisciplinary driven requirements towards, e. g., satellite data, sensor monitoring, in situ sample collection, quality assessment and control, processing, analysis and visualization, and (iii) the demand for near real time analyses on board as well as on land with limited satellite bandwidth. The key modules of O2A's digital research infrastructure established by AWI are implementing the FAIR principles: SENSORWeb, to register sensor applications and sampling devices and capture controlled meta data before and alongside any measurements in the field Data ingest, allowing researchers to feed data into storage systems and processing pipelines in a prepared and documented way, at best in controlled near real-time data streams Dashboards allowing researchers to find and access data and share and collaborate among partners Workspace enabling researchers to access and use data with research software utilizing a cloud-based virtualized infrastructure that allows researchers to analyze massive amounts of data on the spot Archiving and publishing data via repositories and Digital Object Identifiers (DOI
    corecore