96 research outputs found

    Confronting root causes: forced labour in global supply chains

    Get PDF
    Excerpt It is by now widely recognised that effectively tackling forced labour in the global economy means addressing its ‘root causes’. Policymakers, business leaders and civil society organisations all routinely call for interventions that do so. Yet what exactly are these root causes? And how do they operate? The two most commonly given answers are ‘poverty’ and ‘globalisation’. Although each may be foundational to forced labour, both terms are typically used in nebulous, catch-all ways that serve more as excuses than explanations. Both encompass and obscure a web of decisions and processes that maintain an unjust status quo, while being used as euphemisms for deeper socio-economic structures that lie at the core of the capitalist global economy. The question thus becomes: exactly which aspects of poverty and globalisation are responsible for the endemic labour exploitation frequently described with the terms forced labour, human trafficking or modern slavery? Which global economic processes ensure a constant and low-cost supply of highly exploitable and coerced workers? And which dynamics trigger a demand among businesses for their exploitation, making it possible for them to profit from it? This 12-part report is an attempt to answer these questions in a rigorous yet accessible way. With it, we hope to provide policymakers, journalists, scholars and activists with a road map for understanding the political economy of forced labour in today’s “global value chain world”

    The Morphology and Intrinsic Excitability of Developing Mouse Retinal Ganglion Cells

    Get PDF
    The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson's correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson's correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters

    Comparison of visual and refractive results of Toric Implantable Collamer Lens with bioptics for myopic astigmatism

    Get PDF
    PURPOSE: To compare visual and refractive results of Toric Implantable Collamer Lens (TICL) and bioptics (ICL plus excimer corneal surgery) to treat myopic astigmatism. METHODS: Eighty-one eyes underwent TICL implantation and 83 eyes were treated with bioptics (corneal ablation was performed between 1.5 and 6 months after ICL implantation). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refraction, adverse events, safety, and efficacy were evaluated 12 months postoperatively. RESULTS: At 12 months postoperatively, the mean spherical equivalent was -0.15 ± 0.36 diopters (D) in the TICL group and -0.08 ± 0.26 D in the bioptics group (p = 0.099). Sixty-six (81.5 %) and 78 (94.0 %) eyes were within ±0.50 D for TICL and bioptics groups, respectively. The mean Snellen UDVA was not statistically different between both procedures (p = 0.909); 53 (65.4 %) and 54 (65.1 %) eyes achieved at least 20/25 or better in TICL and bioptics groups, respectively. No eye had lost more than two lines of CDVA, and 32.1 % of eyes (26/81) in the TICL group and 57.8 % of eyes (48/83) in the bioptics group had better postoperative UDVA than preoperative CDVA (p < 0.001). Safety was not statistically different between groups (p = 0.464) while efficacy was significantly higher in the bioptics group (p = 0.000). Two eyes with a TICL were treated to correct TICL decentration. CONCLUSIONS: Bioptics showed slightly better outcomes in some clinical measures such as uncorrected visual acuity, efficacy, and refractive predictability. TICL implantation shows reliable results similar to bioptics. A single procedure with TICL implantation might be preferred, eliminating the inherent risks of laser treatments and the risks of a second surgical procedure.The authors have no proprietary interests in any of the materials mentioned in this article. This research was supported in part by a Universitat de Valencia Research Grant to Robert Montes-Mico (#SAF2009-13342 and #SAF2008-01114-E#) and Fundacao para a Ciencia e Tecnologia of Portugal through a Grant to Paulo Fernandes (#FCT-SFRH-BD-34303-2007#)

    The influence of cycloplegic in objective refraction

    Get PDF
    The purpose of this study was to compare refractions measured with an autorefractor and retinoscopy in cycloplegic and non-cycloplegic eyes. The objective refractions were performed in 199 right eyes from 199 healthy young adults with a mean age of 21.6 ±2.66 years. The measurements were performed first without cycloplegia and repeated 30 minutes later with cycloplegia. Data were analyzed using Fourier decomposition of the power profile. More negative values of component M and J0 were give by non-cycloplegic autorefraction compared to cycloplegic autorefraction (p<0.001). However more positive values were given by non-cycloplegic autorefraciton regarding to the J45 vector, althought this differences were not statistically significant (p=0.233). Regarding retinoscopy, more negative values of component M where obtained with non-cycloplegic retinoscopy (p<0.001); for the cylindrical vectors J0 and J45 the retinoscopy without cycloplegic yields more negative values (p= 0.234; p= 0.112, respectively). Accepting that differences between cycloplegic and non-cycloplegic retinoscopy are only due to accommodative response, present results confirm that when performed by an experienced clinician, retinoscopy is a more reliable method to obtain objective start point for refraction under non-cycloplegic conditions

    Short-term stability in refractive status despite large fluctuations in glucose levels in diabetes mellitus type 1 and 2

    Get PDF
    Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients

    Repeatability of Foveal Measurements Using Spectralis Optical Coherence Tomography Segmentation Software

    Get PDF
    PURPOSE: To investigate repeatability and reproducibility of thickness of eight individual retinal layers at axial and lateral foveal locations, as well as foveal width, measured from Spectralis spectral domain optical coherence tomography (SD-OCT) scans using newly available retinal layer segmentation software. METHODS: High-resolution SD-OCT scans were acquired for 40 eyes of 40 young healthy volunteers. Two scans were obtained in a single visit for each participant. Using new Spectralis segmentation software, two investigators independently obtained thickness of each of eight individual retinal layers at 0°, 2° and 5° eccentricities nasal and temporal to foveal centre, as well as foveal width measurements. Bland-Altman Coefficient of Repeatability (CoR) was calculated for inter-investigator and inter-scan agreement of all retinal measurements. Spearman's ρ indicated correlation of manually located central retinal thickness (RT0) with automated minimum foveal thickness (MFT) measurements. In addition, we investigated nasal-temporal symmetry of individual retinal layer thickness within the foveal pit. RESULTS: Inter-scan CoR values ranged from 3.1μm for axial retinal nerve fibre layer thickness to 15.0μm for the ganglion cell layer at 5° eccentricity. Mean foveal width was 2550μm ± 322μm with a CoR of 13μm for inter-investigator and 40μm for inter-scan agreement. Correlation of RT0 and MFT was very good (ρ = 0.97, P 0.05); however this symmetry could not be found at 5° eccentricity. CONCLUSIONS: We demonstrate excellent repeatability and reproducibility of each of eight individual retinal layer thickness measurements within the fovea as well as foveal width using Spectralis SD-OCT segmentation software in a young, healthy cohort. Thickness of all individual retinal layers were symmetrical at 2°, but not at 5° eccentricity away from the fovea

    The `Parahippocampal Place Area' Responds Selectively to High Spatial Frequencies

    Get PDF
    Defining the exact mechanisms by which the brain processes visual objects and scenes remains an unresolved challenge. Valuable clues to this process have emerged from the demonstration that clusters of neurons (“modules”) in inferior temporal cortex apparently respond selectively to specific categories of visual stimuli, such as places/scenes. However, the higher-order “category-selective” response could also reflect specific lower-level spatial factors. Here we tested this idea in multiple functional MRI experiments, in humans and macaque monkeys, by systematically manipulating the spatial content of geometrical shapes and natural images. These tests revealed that visual spatial discontinuities (as reflected by an increased response to high spatial frequencies) selectively activate a well-known place-selective region of visual cortex (the “parahippocampal place area”) in humans. In macaques, we demonstrate a homologous cortical area, and show that it also responds selectively to higher spatial frequencies. The parahippocampal place area may use such information for detecting object borders and scene details during spatial perception and navigation.National Institutes of Health (U.S.) (NIH Grant R01 MH6752)National Institutes of Health (U.S.) (grant R01 EY017081)Athinoula A. Martinos Center for Biomedical ImagingNational Center for Research Resources (U.S.)Mind Research Institut

    Design of a Trichromatic Cone Array

    Get PDF
    Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative
    corecore