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Abstract  

Purpose: To investigate repeatability and reproducibility of thickness of eight 

individual retinal layers at axial and lateral foveal locations, as well as foveal 

width, measured from Spectralis spectral domain optical coherence 

tomography (SD-OCT) scans using newly available retinal layer segmentation 

software. 

Methods: High-resolution SD-OCT scans were acquired for 40 eyes of 40 

young healthy volunteers. Two scans were obtained in a single visit for each 

participant. Using new Spectralis segmentation software, two investigators 

independently obtained thickness of each of eight individual retinal layers at 

0°, 2° and 5° eccentricities nasal and temporal to foveal centre, as well as 

foveal width measurements. Bland-Altman Coefficient of Repeatability (CoR) 

was calculated for inter-investigator and inter-scan agreement of all retinal 

measurements. Spearman's ρ indicated correlation of manually located 

central retinal thickness (RT0) with automated minimum foveal thickness 

(MFT) measurements. In addition, we investigated nasal-temporal symmetry 

of individual retinal layer thickness within the foveal pit. 

Results: Inter-scan CoR values ranged from 3.1μm for axial retinal nerve 

fibre layer thickness to 15.0μm for the ganglion cell layer at 5° eccentricity. 

Mean foveal width was 2550μm ± 322μm with a CoR of 13μm for inter-

investigator and 40μm for inter-scan agreement. Correlation of RT0 and MFT 

was very good (ρ = 0.97, P < 0.0005). There were no significant differences in 

thickness of any individual retinal layers at 2° nasal compared to temporal to 

fovea (P > 0.05); however this symmetry could not be found at 5° eccentricity. 
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Conclusions: We demonstrate excellent repeatability and reproducibility of 

each of eight individual retinal layer thickness measurements within the fovea 

as well as foveal width using Spectralis SD-OCT segmentation software in a 

young, healthy cohort. Thickness of all individual retinal layers were 

symmetrical at 2°, but not at 5° eccentricity away from the fovea.  
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Introduction 

The arrival of Optical Coherence Tomography (OCT) has changed the 

way that retinal pathology is diagnosed and managed. OCT imaging allows 

non-invasive cross-sectional imaging of the human retina [1]. Good correlation 

with retinal histology [2-4] pertains OCT technology to the clinical diagnosis of 

a variety of ocular pathologies [5-8] based on quantitative evaluation of retinal 

thickness measurements in-vivo [9-11]. Newer spectral domain (SD-OCT) 

methods offer faster acquisition time and improved image resolution 

compared to older time-domain OCT techniques [12,13]. In addition, 

automated retinal thickness measurement techniques are a time-efficient way 

to investigate retinal thickness change over time [14]. Repeatability and 

reproducibility of automated total retinal thickness measurements using SD-

OCT has been demonstrated in healthy individuals [15,16] as well as those 

with ocular pathology [17-22]. This has enabled the definition of levels at 

which true clinical change can be distinguished from measurement variability. 

However, OCT instruments employ a variety of segmentation algorithms 

within their software platforms so that measurements cannot be directly 

compared between instruments [23,24]. It is therefore important to establish 

the repeatability and reproducibility of retinal measurements for each OCT 

device being used for clinical diagnosis and treatment protocol designs [9-11]. 

 According to the configuration of the Spectralis SD-OCT (Heidelberg 

Engineering, Heidelberg, Germany), one pixel represents 3.9μm axially and 

6μm laterally [25]. It features Automatic Real Time (ART), a setting that 

improves image quality by averaging multiple B-scans to reduce noise and 
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Tru-Track, an eye-tracking device that improves scan reproducibility [26]. 

Compared to other OCT instruments, the Spectralis SD-OCT presents the 

highest reproducibility of automated crude central foveal thickness 

measurement [27,22]. Very recently, Heidelberg Engineering launched an 

update to the Spectralis SD-OCT Heidelberg Eye Explorer mapping software 

(version 6.0c) that allows automatic segmentation of individual retinal layers.  

 This study reports inter-investigator and inter-scan repeatability of 

thickness of eight individual retinal layers including the inner and outer 

plexiform and nuclear layers along with combined inner retinal layer thickness 

and overall retinal thickness at manually derived axial and lateral foveal 

locations. Repeatability of foveal width measurements is also investigated. All 

measurements are derived from Spectralis SD-OCT scans using the newly 

available Spectralis retinal layer segmentation software.  

 

Methods  

Study protocol 

 The study included 40 healthy volunteers and took place at the Division 

of Optometry and Visual Science, City University London from October to 

December 2013. The inclusion criterion was logMAR visual acuity better than 

0.3 log units in the eye being tested. Exclusion criteria were ocular pathology 

including corneal disease, macular disease and fundus myopicus, medication 

that may affect retinal function and previous eye surgery, including refractive 

laser correction. For each volunteer, the eye with the best logMAR acuity was 
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selected as the test eye. Mean spherical error (MSE), calculated as sphere 

plus half of the cylinder[28] (average of five autorefractor readings), and mean 

keratometry measurements (average of three horizontal and vertical readings) 

were obtained using the Topcon TRK-1P autorefractor (Topcon, Tokyo, 

Japan). Two experienced investigators (A and B) each derived foveal 

measurements from Spectralis SD-OCT scans, using the techniques 

described below. Investigators A and B both obtained measurements from the 

first scan of each participant (1A and 1B respectively), and investigator B took 

measurements from the second scan (2B). For repeat measurements, each 

investigator was masked to their initial or the other investigator’s results. 

Tomograms were measured in a random order to minimize this potential 

source of bias. 

 

SD-OCT scan acquisition 

All scans were obtained without pupil dilation [29-31] in a dark room 

using the Spectralis SD-OCT device. As recommended by manufacturer 

instructions, each participant’s mean keratometry value was inserted into the 

Spectralis software prior to scan acquisition [32]. Two consecutive 20° x 5° 

volume scans (49 B-scans 30 microns apart, ART 16 frames including 1024 A 

scans) were taken for the test eye within a single visit, without setting the first 

scan as a reference. The participant was instructed to sit back from the device 

between scans. Each time, the investigator focused the infrared fundus image 

according to the participant’s MSE. Central fixation was monitored via the live 

fundus image and scan quality was accepted above 25 decibels (dB), in 

accordance with the manufacturer guidelines.  



 7 

 

Foveal measurements 

Foveal measurements from each SD-OCT scan were performed using 

the inbuilt Spectralis mapping software, Heidelberg Eye Explorer (version 

6.0c). The new Spectralis segmentation software was used to obtain 

individual retinal layer thickness measurements including: overall retinal 

thickness (RT), retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), 

inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer 

(OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), inner 

retinal layer (IRL) and photoreceptor layer (PR). Measures of foveal width 

were also evaluated, as well as the correlation of manual and automated 

measures of central retinal thickness. In addition, we explored the horizontal 

symmetry from the foveal centre of the thickness of the individual retinal 

layers. 

No manual adjustments to B-scan retinal layer segmentation were 

made prior to measurements being taken. For each scan, the foveal centre 

was identified as the frame including the brightest foveal reflex [33,34]. As 

suggested by Mohammad et al., when a bright reflex was absent or present in 

two or more frames, the frame containing the thickest outer segment layer 

was chosen [35]. At the point where the software caliper bisected the foveal 

reflex, individual layer thickness (RT, RNFL, GCL, IPL, INL, OPL, ONL, RPE, 

IRL and PR) was recorded in microns (Fig. 1a). The software displays overall 

retinal thickness as the vertical distance between the vitreoretinal interface 

and Bruch’s membrane (Fig. 1b). 
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Figs. 1a and b. Central retinal thickness and layer segmentation by 

Spectralis SD-OCT software. The Spectralis software displays overall retinal 

thickness as the vertical distance between the vitreoretinal interface and 

Bruch’s membrane. Using the thickness profile, the foveal reflex was bisected 

by the software caliper, and the thickness of the individual layers was 

recorded in microns (a). Segmentation of the individual retinal layers can be 

seen in the lower image (b). 

 

Thickness of each retinal layer was also measured at 2° and 5° 

eccentricity away from the fovea. In order to locate these lateral positions on 

the tomogram, the eccentricities in degrees were converted into microns 

based on each individual’s OCT scan length. For example, given that the scan 

length (in millimeters, mm) generated by the Spectralis represents 20°, the 

lateral equivalent in microns of 2° would be 2*(scan length/20). The inbuilt 
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software caliper was set at the appropriate lateral distance perpendicular to 

the vertical caliper bisecting the foveal reflex and thickness of each retinal 

layer recorded from the retinal thickness profile (Fig. 2). Lateral 

measurements were taken nasal to the fovea for all tomograms. In addition, 

temporal retinal thickness measurements were also obtained for the first scan 

of each participant to assess horizontal symmetry. 

 

 

Fig. 2. Positioning of software caliper for lateral retinal thickness 

measurement. 

 

Using the inbuilt manual calipers, foveal width was measured in 

microns as the horizontal distance between foveal crests [11,30,33,36], 

identified as the maximum retinal thickness nearest to the foveal reflex on the 

nasal and temporal side (Figs. 3a and 3b).  
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Figs. 3a and b. Measurement of foveal width. Maximum retinal thickness 

nearest to the foveal reflex on nasal (a) and temporal side identified from the 

thickness profile. Foveal width was measured in microns using the inbuilt 

manual calipers (b). 

 

The Spectralis mapping software also generates automated measures 

of retinal thickness based on analyses of the central and inner 1000, 3000 

and 6000μm subfields as defined by the Early Treatment Diabetic 

Retinopathy Study [37]. From this, the central minimum retinal thickness value 

was recorded as the minimum foveal thickness (MFT) for each scan. Central 

foveal thickness of each retinal layer (CFT), corresponding to the average 

thickness of all points within the central ETDRS zone of 1000μm diameter, 

was also recorded. 
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Ethical approval and consent  

Approval for the study was obtained from the Optometry Research & 

Ethics Committee City University London. All subjects gave written informed 

consent conforming to the tenets of the Declaration of Helsinki. 

 

Statistical analysis  

All statistical analyses were performed using SPSS version 22.0 for 

Windows (SPSS Inc., Chicago, USA). Values in the text and tables are 

presented as the mean ± standard deviation (SD). Preliminary analyses were 

performed to ensure no violation of the assumptions of normality, linearity and 

homoscedasticity. The CoR was calculated as 1.96s, where s is the SD of the 

difference between pairs of measurements [38]. Limits of agreement (LoA) 

were calculated as the mean difference between two sets of data ± CoR. The 

LoA indicate the range within which 95% of the differences between 

measurements will lie [38-40]. 

We calculated the inter-investigator agreement of the thickness of each 

retinal layer and also foveal width measurements from the first scan (1A 

versus 1B). The inter-scan CoR for the same retinal measurements taken by 

investigator B was also calculated (1B versus 2B). We determined the 

correlation of manual location of central retinal thickness (RT0) and MFT using 

Spearman's Rank Correlation coefficient, ρ. The independent t-test was used 

to assess difference between nasal and temporal retinal layer thickness. 

Statistical significance was accepted at P < 0.05.  
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Results 

The study group included 40 participants (12 males and 28 females) 

with a mean age of 21.1 ± 3.1 years (range 18 to 36 years). Mean MSE was -

1.70 ± 2.32DS (ranging from -10.00DS to +0.50DS) and mean keratometry 

was 7.83 ± 0.30mm (ranging from 7.16 to 9.05mm). There was no significant 

difference in mean image quality between scan 1 (38 ± 4dB) and scan 2 (38 ± 

3dB; P = 1.00).  

Repeatability of thickness of individual retinal layer measurements are 

presented in Table 1 (inter-investigator) and Table 2 (inter-scan), with the 

mean difference and CoR values for each layer at 0°, 2° and 5° nasal 

eccentricity as well as the CFT given. Mean overall retinal thickness was 217 

± 16μm at 0°, 296 ± 27μm at 2° and 350 ± 16μm at 5° nasal to foveal centre, 

with respective CoR values of 0.3, 3.2 and 0.5μm for inter-observer and 7.4, 

8.5 and 7.6μm for inter-scan agreement. Mean foveal width was 2550μm ± 

322μm with mean difference of 0.60μm and CoR of 13μm for inter-investigator 

and mean difference of -0.70μm and CoR of 40μm for inter-scan agreement. 

Bland-Altman plots are presented in Fig. 4. 
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Table 1. Inter-observer agreement of thickness of retinal layers in 

microns. Retinal thickness refers to thickness from the inner limiting 

membrane to the external limiting membrane. Limits of Agreement are equal 

to the mean difference ± Coefficient of Repeatability (CoR). 

 

I)  Eccentricity from foveal centre (degrees) 
II)  0  2  5  
Retinal layer Mean 

difference 
CoR Mean 

difference 
CoR Mean 

difference 
CoR 

III) Retina -0.025 0.31 -0.425 3.20 -0.075 0.52 
IV) Retinal nerve 

fibre layer 
-0.025 0.31 0.225 3.91 -0.10 0.74 

V) Ganglion cell 
layer 

-0.05 0.43 -0.35 2.41 -0.025 0.31 

VI) Inner plexiform 
layer 

0.025 0.31 -0.10 1.07 -0.025 0.31 

VII) Inner 
nuclear layer 

0.125 1.27 -0.15 1.14 0.00 0.44 

VIII) Outer 
plexiform layer 

0.025 0.54 0.075 1.03 -0.025 0.54 

IX) Outer nuclear 
layer 

-0.125 1.73 -0.075 2.36 0.00 0.44 

X) Inner retinal 
layer 

-0.025 0.70 -0.475 3.20 -0.075 0.93 

Photoreceptor 
layer 

-0.05 0.43 -0.025 1.13 0.075 0.93 

XI) Retinal 
pigment 
epithelium 

0.00 0.77 0.05 1.08 0.025 0.31 
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Table 2. Inter-scan agreement of thickness of retinal layers in microns at 

0, 2 and 5° from foveal centre. Retinal thickness refers to thickness from the 

inner limiting membrane to the external limiting membrane. Limits of 

Agreement are equal to the mean difference ± Coefficient of Repeatability 

(CoR). 

 

XII)  Eccentricity from foveal centre (degrees) 

XIII)  0 2 5 CFT 

Retinal 
layer 

Mean 
difference  

CoR Mean 
difference  

CoR Mean 
difference  

CoR Mean 
difference  

CoR 

XIV) Reti
na 

-0.35 7.4 -0.423 8.46 0.5 7.57 -0.08 3.7 

XV) Retinal 
nerve 
fibre 
layer 

0.18 3.1 0.75 8.42 -0.85 10.0 -0.05 1.6 

XVI) Gan
glion cell 
layer 

-0.43 4.4 -1.00 7.13 -0.83 15.0 -0.18 1.8 

XVII) Inne
r 
plexifor
m layer 

-0.53 5.7 0.03 7.29 -0.20 9.2 -0.32 3.6 

XVIII) Inne
r nuclear 
layer 

-0.23 5.0 0.75 9.74 0.35 14.1 -0.03 2.0 

XIX) Out
er 
plexifor
m layer 

-0.90 8.9 -0.25 10.7 0.80 14.8 -0.2 6.0 

XX) Outer 
nuclear 
layer 

1.85 14.7 0.63 13.9 -0.28 4.92 -0/05 6.9 

XXI) Inne
r retinal 
layer 

0.18 12.0 0.63 14.1 -0.03 7.97 -0.20 7.7 

Photorecept
or layer 

-0.13 13.2 0.53 12.5 1.05 7.36 0.53 4.9 

XXII) Reti
nal 
pigment 
epitheliu
m 

0.15 11.6 0.08 8.54 0.45 4.57 0.18 2.1 
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Figs. 4a-d. Bland-Altman plots to show a) Inter-observer agreement of 

central retinal thickness; b) Inter-scan agreement of central retinal 

thickness; c) Inter-observer agreement of foveal width; d) Inter-scan 

agreement of foveal width. All measurements presented in microns. Red 

line indicates mean difference, d between values. Limits of Agreement 

(d+1.96s) represented by upper and lower grey dashed lines respectively. 
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The automated measure of MFT showed a mean of 216 ± 15μm for the 

first scan and 217 ± 15μm for the repeated scan. MFT mean difference 

between scans was 0.33μm, with CoR of 2.19 and LoA from -1.87 to 2.52μm. 

There was excellent correlation between automated MFT and the manual RT0 

measurements taken from investigator B's analysis of the first scan (ρ = 0.97, 

P < 0.0005).  

The mean thickness of the individual retinal layers at the foveal centre 

and at 2° and 5° eccentricity are given in Table 3. While there was no 

significant difference in thickness of all individual retinal layers at 2° nasal 

compared to temporal to fovea (P > 0.05) this was not true at 5° eccentricity, 

whereby the thickness of RT, RNFL, GCL, INL, ONL and IRL were 

significantly increased nasally compared to temporally (Table 3).  
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Table 3. Mean thickness of individual retinal layers at foveal centre and 

at 2 and 5 degrees eccentricity nasal and temporal to fovea. P-value of 

independent t-test between nasal and temporal shown. 

 

  Eccentricity from foveal centre (degrees) 
  2 5 
Retinal layer  Mean+SD P-value Mean+SD P-value 

Retina nasal  296  27 0.80 350 16 <0.0005 
temporal 298 19  321 14  

XXIII) Retinal 
nerve fibre 
layer 

nasal 17 4 0.10 22 5 <0.0005 
temporal 19 5  13 4  

Ganglion cell 
layer 

nasal 26 9 0.99 60 5 <0.0005 
temporal 26 6  50 8  

Inner plexiform 
layer 

nasal 29 7 0.23 47 5 0.15 
temporal 31 6  45 5  

Inner nuclear 
layer 

nasal 25 7 0.06 42 5 <0.0005 
temporal 28 6  38 7  

Outer plexiform 
layer 

nasal 28 7 0.97 29 5 0.84 
temporal 28 5  29 6  

Outer nuclear 
layer 

nasal 80 12 0.43 72 9 <0.0005 
temporal 82 12  67 8  

XXIV) Inner 
retinal layer 

nasal 208 27 0.43 271 15 <0.0005 
temporal 212 19  241 14  

Photoreceptor 
layer 

nasal 88 8 0.09 80 3 0.06 
temporal 85 6  79 3  

Retinal pigment 
epithelium 

nasal 17 3 0.09 13 2 0.30 
temporal 16 3  13 2  

 

Discussion 

We investigated Spectralis SD-OCT repeatability and reproducibility of 

manually derived and automated axial, as well as lateral foveal 

measurements in young healthy individuals. To our knowledge, this is the first 

report of repeatability and reproducibility of thickness measurements of each 

of eight individual retinal layers at the centre of the fovea as well as at two 

lateral positions derived using the newly available Spectralis segmentation 
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software. Manual measurements of RT0 (217 ± 16μm) and automated MFT 

(216 ± 15μm) in the current study compare well with those obtained in a study 

using the Spectralis OCT device in which a mean automated foveal thickness 

of 228 ± 11μm of forty subjects aged 19 to 50 years was reported [23]. Our 

results show that inter-observer CoR values were less than 4μm for all 

individual layer thicknesses. The CoR values at 2° were greater than at 0° or 

5° eccentricity with the greatest difference in the RT, RNFL, GCL and IRL, 

most likely due to software algorithm errors. Compared to inter-observer 

agreement, inter-scan CoR values were greater and varied across individual 

layers, up to a maximum of 15μm for the GCL at 5° eccentricity nasal to the 

foveal centre. LoA for RT0 were narrower for inter-observer compared to inter-

scan measurements (Fig. 4). There was one outlier in each case that could 

not be explained. In agreement with an earlier report [19], there did not 

appear to be any relationship between mean central retinal thickness or foveal 

width and repeatability. It has been shown previously that retinal thickness 

measurements may be affected by OCT image quality below the acceptable 

range stated by the OCT manufacturer [41]. This should be taken into account 

when examining individuals in whom the image quality is worse, for example 

due to cataract. Mean image quality of all scans in the current study was 

excellent at 38dB eliminating this source of error. We did not use the 

reference setting option to acquire the second scan. An earlier study showed 

that this may unlikely affect the reproducibility of RNFL thickness in normal 

eyes [42]; however, this should be confirmed for all retinal layers.  

A strength of our study is that all measurements were obtained from 

scans that had individual ocular biometry taken into account. Individual scan 
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lengths are generated by the Spectralis software based on the subject’s 

corneal curvature and refractive error as well as a non-modifiable pre-set axial 

length to minimise the effects of lateral magnification caused by the optics of 

the eye [32]. While we did not perform a subjective refraction on each 

participant, it has been shown that using an autorefractor to approximate 

refractive error is an accepted method [43]. In addition, optical defocus of two 

diopters has minimal effect on retinal thickness measurements obtained with 

the Spectralis [41]. 

It has been shown that the centre of the fovea assumed by OCT 

instruments and the retinal locus of fixation do not always correspond [44,45], 

with deviations of approximately 60 ± 50μm between fixation and the centre of 

the foveal avascular zone [46]. In order to correlate some measure of visual 

function at fixation (e.g. visual acuity or macular pigment) with retinal anatomy 

at the corresponding retinal locus, it may be more appropriate to manually 

locate the fixation point for foveal thickness measurements. Indeed, visual 

inspection of OCT images with manual identification of the foveal centre was 

the preferred method in a study quantifying foveal thickness and visual acuity 

in albinism [35]. However, the repeatability of manually derived lateral and 

axial retinal measurements is less well documented: one study was based on 

manual measurements of a model eye [24], while another study explored the 

repeatability of manual sub-foveal choroidal thickness measurements [10]. 

We have shown excellent correlation between automated MFT and manually 

located RT0 measurements (ρ = 0.97, P < 0.0005). The low CoR values for 

RT0 (<1 μm inter-observer and <8μm inter-scan) show that the method of 

manually selecting the position at which to measure central retinal thickness is 
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robust to inter-investigator and inter-scan variability. Additionally, in the 

current study, both investigators independently selected the same tomogram 

for analysis using the protocol described in the methods in all cases.  

Repeatability of automated MFT and CFT has shown to vary across 

OCT devices and also depend on the scan protocol employed [47]. We have 

shown high reproducibility of automated macular thickness measurements 

(MFT) using the Spectralis to obtain high resolution 20° x 5° volume scans (49 

B-scans 30 microns apart, ART 16 frames, 1024 A scans), indicated by the 

inter-scan CoR of 2.19μm. This is in accordance with a previous report in 

which the LoA were -2.49 to 3.77μm for inter-observer agreement of mean 

macular thickness measures using the Spectralis [27]. The inter-scan CoR of 

3.7μm for CFT also compares well with a study in which a CoR value of 

2.69μm for mean macular thickness across the central 1000μm diameter was 

reported using the Stratus OCT device [31]. However, in an investigation 

involving 50 subjects with diabetic macula oedema, a higher CoR of 8.03μm 

was reported for Spectralis SD-OCT automated central subfield retinal 

thickness measurements [18]. This suggests that ocular pathology increases 

the level at which true clinical change has occurred as opposed to 

measurement variability most likely due to fixation problems. In addition, the 

CoR for retinal thickness in subfields surrounding the foveal centre ranged 

from 3.97 to 7.23μm [18]. Caution must therefore be taken when considering 

the level at which clinical change is deemed to occur in individuals with retinal 

pathology and low vision [18], and for retinal thickness changes occurring 

away from the centre of the fovea [48]. 
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To our knowledge there are no reports of repeatability of manually 

derived lateral SD-OCT scan measurements in human subjects. We found a 

considerably large mean foveal width of 2550μm ± 322μm. Foveal pit 

diameters up to 2510μm have been reported using the Cirrus OCT [49] based 

on measuring the foveal pit from rim-to-rim using an automated MatLab 

algorithm [50]. Comparing foveal width between studies is challenging due to 

its variable definition. The mean foveal diameter of sixty healthy subjects was 

found 1244 ± 211μm measured between the points at which the nerve fibre 

layer ends, and 1371 ± 215μm when measured in the same subjects from 

foveal crest-to-crest [30]. Nevertheless we found a mean difference in foveal 

width of just 0.60μm between measurements obtained independently by the 

two investigators. This is much smaller than the difference of -14μm found in 

a study using the Cirrus OCT [49]. Estimation of the reproducibility of lateral 

foveal width measurements obtained from two scans of the same participant 

acquired within one visit by investigator B yielded a CoR of 40μm. This 

relatively large inter-scan CoR should be taken into account when 

investigating differences in foveal diameter between individuals, or 

longitudinally with time. Of note, LoA were wider for inter-scan compared to 

inter-observer measures of foveal width. The three outliers in both cases 

could not be explained. Nonetheless, when investigating change over time in 

a clinical setting a baseline scan image is usually set as a reference and 

repeated scans are subsequently compared to this. It is expected that this 

would improve the CoR for the lateral measurements [51]. 

Few studies have quantitatively assessed both inner and outer retinal 

morphology of the foveal pit. An earlier study reported circular symmetry of 
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the outer retina (from the external limiting membrane to Bruch's membrane) at 

low eccentricities [52]. Our results indicate that the individual inner and outer 

retinal layers are all symmetrical at low eccentricities. In contrast, at 5° 

eccentricity there were significant differences in thickness of RT, RNFL, GCL, 

INL, ONL and IRL (Table 3). Asymmetry of the RNFL and GCL is not 

surprising given the distribution of the RNFL, with the thinnest peripapillary 

RNFL thickness found within the papillomacular bundle [42,53]. The 

evaluation of inner and outer retinal layer symmetry in the current study may 

be useful in future investigations of foveal morphology [54]. Choroidal 

thickness [10] and the length of the photoreceptor layers [35] are increasingly 

being used as both diagnostic and visual prognostic indicators in a variety of 

retinal disease states such as albinism [35]; and neuronal GCL loss has been 

evaluated in eyes of patients with multiple sclerosis [55]. Further work is 

needed however to estimate the reliability of measurements in eyes with 

macular pathology where poor fixation and disruptions in retinal morphology 

might make these measurements more variable [56]. 

We estimated the measurement error of our manually derived axial and 

lateral retinal measurement methods. Measurement error may be caused by 

instrument and software algorithm errors as well as operator error. Our results 

show that manually finding the location at which to extract central retinal 

thickness measurements is robust to inter-investigator repeatability. We also 

showed good reproducibility of individual retinal layer thickness 

measurements obtained from two scans acquired within a single visit. The 

inter-observer CoR values are actually smaller than the digital axial resolution 

of 3.9μm achievable with high resolution Spectralis SD-OCT (Spectralis 
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technical guidelines) [25], indicating that there is very good repeatability of 

manual axial retinal thickness measurements between two observers looking 

at the same scan.  

 

Conclusion 

Our findings show excellent repeatability and reproducibility of thickness 

measurements of each of eight individual retinal layers at manually derived 

axial and lateral foveal locations obtained using new Spectralis SD-OCT 

segmentation software in a young, healthy cohort. The inter-observer CoR 

values for each retinal layer give an indication of the level at which thickness 

and foveal width variation is indicative of true difference as opposed to 

measurement variability. The inter-scan CoR values signify the level at which 

change over time in axial and lateral measurements within an individual can 

be considered when the baseline reference scan feature of the Spectralis is 

not utilised. The method of manually selecting the position at which to 

measure central retinal thickness is robust to inter-investigator and inter-scan 

variability. We have demonstrated excellent correlation between automated 

and manually derived central retinal thickness measurements.. Additionally, 

we have shown that the individual retinal layers are horizontally symmetrical 

at 2°, but not at 5° eccentricity. These results could provide valuable 

information for future studies involving foveal morphology specifically 

examining the individual retinal layers. 
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