22 research outputs found

    Thermal width and gluo-dissociation of quarkonium in pNRQCD

    Full text link
    The thermal width of heavy-quarkonium bound states in a quark-gluon plasma has been recently derived in an effective field theory approach. Two phenomena contribute to the width: the Landau damping phenomenon and the break-up of a colour-singlet bound state into a colour-octet heavy quark-antiquark pair by absorption of a thermal gluon. In the paper, we investigate the relation between the singlet-to-octet thermal break-up and the so-called gluo-dissociation, a mechanism for quarkonium dissociation widely used in phenomenological approaches. The gluo-dissociation thermal width is obtained by convoluting the gluon thermal distribution with the cross section of a gluon and a 1S quarkonium state to a colour octet quark-antiquark state in vacuum, a cross section that at leading order, but neglecting colour-octet effects, was computed long ago by Bhanot and Peskin. We will, first, show that the effective field theory framework provides a natural derivation of the gluo-dissociation factorization formula at leading order, which is, indeed, the singlet-to-octet thermal break-up expression. Second, the singlet-to-octet thermal break-up expression will allow us to improve the Bhanot--Peskin cross section by including the contribution of the octet potential, which amounts to include final-state interactions between the heavy quark and antiquark. Finally, we will quantify the effects due to final-state interactions on the gluo-dissociation cross section and on the quarkonium thermal width.Comment: 17 pages, 6 figure

    Recombinant human erythropoietin α modulates the effects of radiotherapy on colorectal cancer microvessels

    Get PDF
    Recent data suggest that recombinant human erythropoietin (rhEPO) modulates tumour growth and therapy response. The purpose of the present study was to examine the modulation of radiotherapy (RT) effects on tumour microvessels by rhEPO in a rat colorectal cancer model. Before and after 5 × 5 Gy of RT, dynamic contrast-enhanced -magnetic resonance imaging was performed and endothelial permeability surface product (PS), plasma flow (F), and blood volume (V) were modelled. Imaging was combined with pO2 measurements, analysis of microvessel density, microvessel diameter, microvessel fractal dimension, and expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 α (HIF-1α), Bax, and Bcl-2. We found that RT significantly reduced PS and V in control rats, but not in rhEPO-treated rats, whereas F was unaffected by RT. Oxygenation was significantly better in rhEPO-treated animals, and RT induced a heterogeneous reoxygenation in both groups. Microvessel diameter was significantly larger in rhEPO animals, whereas VEGF expression was significantly lower in the rhEPO group. No differences were observed in HIF-1α, Bax, or Bcl-2 expression. We conclude that rhEPO results in spatially heterogeneous modulation of RT effects on tumour microvessels. Direct effects of rhEPO on neoplastic endothelium are likely to explain these findings in addition to indirect effects induced by increased oxygenation

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore