458 research outputs found
Low-background applications of MICROMEGAS detector technology
The MICROMEGAS detector concept, generally optimized for use in accelerator
experiments, displays a peculiar combination of features that can be
advantageous in several astroparticle and neutrino physics applications. Their
sub-keV ionization energy threshold, excellent energy and space resolution, and
a simplicity of design that allows the use of radioclean materials in their
construction are some of these characteristics. We envision tackling
experimental challenges such as the measurement of neutral-current
neutrino-nucleus coherent scattering or Weakly Interacting Massive Particle
(WIMP) detectors with directional sensitivity. The large physics potential of a
compact (total volume O(1)m), multi-purpose array of low-background
MICROMEGAS is made evident.Comment: 5 pg, presented at IMAGING-2000, Stockholm, June 2000. To appear in
Nucl. Instr. & Meth. Final version after referees' inpu
MPGDs in Compton imaging with liquid-xenon
The interaction of radiation with liquid xenon, inducing both scintillation
and ionization signals, is of particular interest for Compton-sequences
reconstruction. We report on the development and recent results of a
liquid-xenon time-projection chamber, dedicated to a novel nuclear imaging
technique named "3 gamma imaging". In a first prototype, the scintillation is
detected by a vacuum photomultiplier tube and the charges are collected with a
MICROMEGAS structure; both are fully immersed in liquid xenon. In view of the
final large-area detector, and with the aim of minimizing dead-zones, we are
investigating a gaseous photomultiplier for recording the UV scintillation
photons. The prototype concept is presented as well as preliminary results in
liquid xenon. We also present soft x-rays test results of a gaseous
photomultiplier prototype made of a double Thick Gaseous Electron Multiplier
(THGEM) at normal temperature and pressure conditions.Comment: presented at MPGD09, CRETE, June 2009; to be published in JINST
Proceedings, PDF, 10 pages, 11 figure
First Dark Matter Results from the XENON100 Experiment
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran
Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62
kg of liquid xenon in an ultra-low background dual-phase time projection
chamber. In this letter, we present first dark matter results from the analysis
of 11.17 live days of non-blind data, acquired in October and November 2009. In
the selected fiducial target of 40 kg, and within the pre-defined signal
region, we observe no events and hence exclude spin-independent WIMP-nucleon
elastic scattering cross-sections above 3.4 x 10^-44 cm^2 for 55 GeV/c^2 WIMPs
at 90% confidence level. Below 20 GeV/c^2, this result constrains the
interpretation of the CoGeNT and DAMA signals as being due to spin-independent,
elastic, light mass WIMP interactions.Comment: 5 pages, 5 figures. Matches published versio
Material screening and selection for XENON100
Results of the extensive radioactivity screening campaign to identify
materials for the construction of XENON100 are reported. This Dark Matter
search experiment is operated underground at Laboratori Nazionali del Gran
Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors
(HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been
applied for a few low mass plastic samples. Detailed tables with the
radioactive contaminations of all screened samples are presented, together with
the implications for XENON100.Comment: 8 pages, 1 figur
Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data
The XENON100 experiment has recently completed a dark matter run with 100.9
live-days of data, taken from January to June 2010. Events in a 48kg fiducial
volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A
total of three events have been found in the predefined signal region,
compatible with the background prediction of (1.8 \pm 0.6) events. Based on
this analysis we present limits on the WIMP-nucleon cross section for inelastic
dark matter. With the present data we are able to rule out the explanation for
the observed DAMA/LIBRA modulation as being due to inelastic dark matter
scattering off iodine at a 90% confidence level.Comment: 3 pages, 3 figure
Dark Matter Results from 100 Live Days of XENON100 Data
We present results from the direct search for dark matter with the XENON100
detector, installed underground at the Laboratori Nazionali del Gran Sasso of
INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg
liquid xenon target. Interaction vertex reconstruction in three dimensions with
millimeter precision allows to select only the innermost 48 kg as ultra-low
background fiducial target. In 100.9 live days of data, acquired between
January and June 2010, no evidence for dark matter is found. Three candidate
events were observed in a pre-defined signal region with an expected background
of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter
interactions today, excluding spin-independent elastic WIMP-nucleon scattering
cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90%
confidence level.Comment: 5 pages, 5 figures; matches accepted versio
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
A proposal for a high performance -camera based on liquid Xenon converter and gaseous photomultiplier for PET
présenté par D. Ther
- …
