8 research outputs found

    Two-dimensional transesophageal echocardiography for aortic annular sizing in patients undergoing transcatheter aortic valve implantation

    Full text link
    Background: Accurate preoperative assessment of the aortic annulus dimension is crucial for successful transcatheter aortic valve implantation (TAVI). In this study we examined the accuracy of a novel method using two-dimensional transesophageal echocardiography (2D-TEE) for measurement of the aortic annulus. Methods: We evaluated the theoretical impact of the measurement of the annulus diameter and area using the circumcircle of a triangle method on the decision to perform the procedure and choice of the prosthesis size. Results: Sixty-three consecutive patients were scheduled for TAVI. Mean age was 82 +/- 4 years, and 25 patients (55.6 %) were female. Mean aortic annulus diameter was 20.3 +/- 2.2 mm assessed by TEE on the mid-esophageal long-axis view and 23.9 +/- 2.3 mm using CT (p < 0.001). There was a tendency for the TEE derived areas using the new method to be higher (p < 0.001). The TEE measurements were on average 42.33 mm(2) higher than the CT measurements without an evidence of a systematic over-or under-sizing (p = 1.00). Agreement between TEE and CT chosen valve sizes was good overall (kappa = 0.67 and weighted kappa = 0.71). For patients who turned out to have no AR, the two methods agreed in 84.6 % of patients. Conclusions: CT remanis the gold standard in sizing of the aortic valve annulus. Nevertheless, sizing of the aortic valve annulus using TEE derived area may be helpful. The impact of integration of this method in the algorithm of aortic annulus sizing on the outcome of patients undergoing TAVI should be examined in future studies

    Two-dimensional transesophageal echocardiography for aortic annular sizing in patients undergoing transcatheter aortic valve implantation

    No full text
    Background: Accurate preoperative assessment of the aortic annulus dimension is crucial for successful transcatheter aortic valve implantation (TAVI). In this study we examined the accuracy of a novel method using two-dimensional transesophageal echocardiography (2D-TEE) for measurement of the aortic annulus. Methods: We evaluated the theoretical impact of the measurement of the annulus diameter and area using the circumcircle of a triangle method on the decision to perform the procedure and choice of the prosthesis size. Results: Sixty-three consecutive patients were scheduled for TAVI. Mean age was 82 +/- 4 years, and 25 patients (55.6 %) were female. Mean aortic annulus diameter was 20.3 +/- 2.2 mm assessed by TEE on the mid-esophageal long-axis view and 23.9 +/- 2.3 mm using CT (p < 0.001). There was a tendency for the TEE derived areas using the new method to be higher (p < 0.001). The TEE measurements were on average 42.33 mm(2) higher than the CT measurements without an evidence of a systematic over-or under-sizing (p = 1.00). Agreement between TEE and CT chosen valve sizes was good overall (kappa = 0.67 and weighted kappa = 0.71). For patients who turned out to have no AR, the two methods agreed in 84.6 % of patients. Conclusions: CT remanis the gold standard in sizing of the aortic valve annulus. Nevertheless, sizing of the aortic valve annulus using TEE derived area may be helpful. The impact of integration of this method in the algorithm of aortic annulus sizing on the outcome of patients undergoing TAVI should be examined in future studies

    Global, in situ analysis of the structural proteome in individuals with Parkinson's disease to identify a new class of biomarker

    No full text
    Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein alpha-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes.ISSN:1545-9993ISSN:1545-998

    Global, in situ analysis of the structural proteome in individuals with Parkinson's disease to identify a new class of biomarker

    No full text
    Parkinson’s disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis–mass spectrometry (LiP–MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein α-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes

    Australia (including Papua New Guinea)

    No full text
    corecore