9 research outputs found

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    Purpose We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Methods Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. Results We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. Conclusion Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals

    One Year Trajectory of Caregiver Burden in Parkinson’s Disease and Analysis of Gender-Specific Aspects

    No full text
    Parkinson’s disease (PD) is a slowly progressive neurodegenerative movement disorder that leads to impairments in activities of daily living. In addition to reducing patients’ quality of life, this disease also affects caregivers’ well-being. Until recently, caregiver burden was mainly assessed by generic questionnaires, which do not take the characteristics of the chronic disease into consideration. In the case of PD, this issue has been addressed by the introduction of the “Parkinson’s disease caregiver burden” questionnaire (PDCB). Data on longitudinal trajectories of caregiver burden are still missing in the literature. In this study, we assessed the one-year trajectory of caregiver burden by the PDCB as a disease-specific questionnaire. Further, gender-specific aspects of caregiver burden were analyzed by applying a caregiver task questionnaire. PDCB total score (n = 84 patients and caregivers) did not significantly change from baseline (30.4) to one year at follow-up (31.5). No significant difference was detected between female and male caregivers in global burden and-specific caregiver tasks. Our data showed only a mild increase of caregiver burden in the timeframe of one year. Gender-specific differences do not seem to impact-specific caregiver tasks in the presented study population

    Alexithymia Is Associated with Reduced Quality of Life and Increased Caregiver Burden in Parkinson's Disease

    No full text
    Parkinson's disease (PD) is the second most frequent neurodegenerative disease of people who are beyond 50 years of age. People with PD (PwP) suffer from a large variety of motor and non-motor symptoms resulting in reduced health-related quality of life (HR-QoL). In the last two decades, alexithymia was identified as an additional non-motor symptom in PD. Alexithymia is defined as a cognitive affective disturbance resulting in difficulty to identify and distinguish feelings from bodily sensations of emotional arousal. In PD, the frequency of patients suffering of alexithymia is increased compared to healthy controls. The aim of the present study was to determine the relationship of alexithymia to HR-QoL of the PwP and caregiver burden of the corresponding caregiver. This cross-sectional questionnaire-based study used disease specific questionnaires for HR-QoL and caregiver burden. In total 119 PwP and their corresponding caregivers were included in the study. HR-QoL of the PwP correlated significantly with alexithymia (p < 0.001), especially the sub-components "identifying feelings" (p < 0.001) and "difficulties describing feelings" (p = 0.001). Caregiver burden also correlated significantly with PwP alexithymia (p < 0.001). However, caregiver burden was associated with sub-components "identifying feelings" (p < 0.008) and "external oriented thinking" (p < 0.004). These data support the importance of alexithymia as a non-motor symptom in PD.status: publishe

    Mindfulness and Psychological Flexibility are Inversely Associated with Caregiver Burden in Parkinson’s Disease

    No full text
    Parkinson&rsquo;s disease (PD) is a neurodegenerative movement disorder with progressive impairments in activities of daily living. With disease progression, people with PD (PwP) need more help and care from their spouses or professional caregivers. Identifying factors that help caregivers to cope with their burden is needed to frame future interventions for PwP caregivers. Mindfulness and psychological flexibility might be factors contributing to resilience against the burden of giving care. In this cross-sectional questionnaire-based study, 118 PwP and their respective primary caregivers were included. Caregivers reported moderate burden and only mild depressive symptoms. Mindfulness measured by the Mindfulness Attention and Awareness scale (p 0.003) and psychological flexibility measured by Acceptance and Actions Questionnaire II (p 0.001) correlated negatively with caregiver burden. Data from this study indicate mindfulness and psychological flexibility are factors contributing to resilience against caregiver burden. Future interventions to reduce burden in PwP caregivers might be improved by the inclusion of mindfulness training programs

    ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales

    No full text
    International audienceState-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach

    ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales

    No full text
    International audienceState-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach

    ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales

    No full text
    International audienceState-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach

    Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss

    No full text
    Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata511 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata511 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype
    corecore