35 research outputs found

    Current state and challenges for dynamic metabolic modeling

    Get PDF
    While the stoichiometry of metabolism is probably the best studied cellular level, the dynamics in metabolism can still not be well described, predicted and, thus, engineered. Unknowns in the metabolic flux behavior arise from kinetic interactions, especially allosteric control mechanisms. While the stoichiometry of enzymes is preserved in vitro, their activity and kinetic behavior differs from the in vivo situation. Next to this challenge, it is infeasible to test the interaction of each enzyme with each intracellular metabolite in vitro exhaustively. As a consequence, the whole interacting metabolome has to be studied in vivo to identify the relevant enzymes properties. In this review we discuss current approaches for in vivo perturbation experiments, that is, stimulus response experiments using different setups and quantitative analytical approaches, including dynamic carbon tracing. Next to reliable and informative data, advanced modeling approaches and computational tools are required to identify kinetic mechanisms and their parameters.The authors EV, AT, KN, IR, MO, DM and AW are part of the ERA-IB funded consortium DYNAMICS (ERA-IB-14-081, NWO 053.80.724)

    OsÀkerhetsmedveten tracking av enskilda bakterier som avbildats pÄ en bildserie med lÄg frekvens

    No full text
    In single-cell analysis, the physiologic states of individual cells are studied. In some studies, the subject of interest is the development over time of some cell characteristic. To obtain time-resolved single-cell data, one possibility is to conduct an experiment on a cell population and make a sequence of images of the population over the course of the experiment. If a mapping is at hand, which determines which cell it is that is the cause of each measured cell in the image sequence, time resolved single-cell data can be extracted. Such a mapping is called a lineage tree, and the process of creating it is called tracking. One aim of this work is to develop a tracking algorithm that incorporates organism specific knowledge, such as average division time, in the tracking process. With respect to this aim, a Bayesian model that incorporates biological knowledge is derived, with which every hypothetical lineage tree can be assigned a probability. Additionally, two Monte Carlo algorithms are developed, that approximate the probability distribution of lineage trees given by the Bayesian model. When an approximate distribution is known, for example the most likely lineage tree can be extracted and used. In many cases, the information provided to an automatic tracking algorithm is insufficient for the algorithm to find the gold standard lineage tree. In these cases, a possibility is to construct the gold standard lineage tree by manual correction of the lineage tree that has been provided by the tracking algorithm. A second aim of this work is to provide a confidence to every assignment in a lineage tree, in order to give the person doing manual corrections useful information about what assignments to change. Such a confidence is provided by the Monte Carlo tracking methods developed in this work.I enskild-cell analys studeras de fysiologiska tillstÄndet hos enskilda celler. I vissa studier Àr man intresserad av hur nÄgon cellegenskap utvecklas över tid. Ett sÀtt att generera tidsupplöst data pÄ enskild-cellnivÄ Àr att utföra ett experiment med en cellpopulation och avbilda den med mikroskop med jÀmna mellanrum. Med hjÀlp av en avbildning som beskriver vilken cell i experiment det Àr som ger upphov till vilken uppmÀtt cell i bildsekvensen, kan sedan enskild-cell data tillgÄs. En sÄdan avbildning kallas ett stamtrÀd (lineage tree), och processen att bestÀmma stamtrÀdet kallas tracking. En mÄlsÀttning med detta arbete Àr att utveckla en trackingalgoritm som anvÀnder organismspecifik kunskap, sÄsom organismens genomsnittliga delningstid, i trackingprocessen. Med denna mÄlsÀttning i hÀnseende hÀrleds en bayesiansk modell med vilken varje stamtrÀd kan tillskrivas en sannolikhet, och som kan ta hÀnsyn till biologisk fakta nÀr detta sker. DÀrtill utvecklas tvÄ Monte Carlo algoritmer som approximerar sannolikhetsfördelningen av stamtrÀd som hÀrrör ur den bayesianska modellen. NÀr en uppskattad fördelning Àr kÀnd kan t ex det mest sannolika stamtrÀdet i fördelningen anvÀndas för enskild-cell analys. I mÄnga fall Àr informationen som en automatisk trackingalgoritm har till hands inte tillrÀcklig för att algoritmen ska kunna producera gold standard stamtrÀdet. I dessa fall kan det vara befogat att konstruera gold standard stamtrÀdet genom att göra manuella korrektioner pÄ ett stamtrÀd som tagits fram automatiskt med en algoritm. En andra mÄlsÀttning med detta arbete Àr att införa ett förtroendemÄtt för enskilda lÀnkar i ett stamtrÀd. Detta förtroendemÄtt ska göra det enklare för personen som gör manuella korrektioner att avgöra ifall en lÀnk i ett stamtrÀd behöver korrigeras eller ej. Ett sÄdant förtroendemÄtt införs, och de tvÄ Monte Carlo algoritmerna som utvecklas i detta arbete tillskriver ett förtroende för varje lÀnk i de stamtrÀd som de levererar

    Bayesian methods for data-driven characterization of cells

    No full text
    Modern biology abounds with questions on cell characterization, such as genetic and molecular composition and metabolic regulation. To elucidate these questions, the experimentation computation cycle is used, where on one side of the cycle, data is generated in experiments and on the other side, data analysis is used to draw conclusions from the data. In this thesis, we use Bayesian statistics to address data analysis challenges in the characterization of cells. In particular, we address the inference of intracellular metabolic reaction rates (fluxes) from measurements of 13C enrichments in metabolites (fluxomics) and cell lineage reconstruction from time lapse microscopy images of cell colonies. In both cases, the focus of the work lies on challenges where some entities, central to the data analysis, remain non-determined by the data. In the fluxomics case, this means that the data is insufficient for determining a unique metabolic network model, and in the single-cell analysis case that the images are insufficient for reconstructing the cell lineage with certainty. Apart from deriving the appropriate statistical formalisms for addressing the above challenges, computational strategies for performing the practical calculations are proposed. For the fluxomics calculations, Markov Chain Monte Carlo methods for single model challenges and a Reversible Jump Markov Chain Monte Carlo method for challenges with model uncertainty are developed, tailored for the typically linearly constrained spaces of flux parameters. For handling uncertainty in cell lineage reconstruction, a particle filtering approach is developed

    OsÀkerhetsmedveten tracking av enskilda bakterier som avbildats pÄ en bildserie med lÄg frekvens

    No full text
    In single-cell analysis, the physiologic states of individual cells are studied. In some studies, the subject of interest is the development over time of some cell characteristic. To obtain time-resolved single-cell data, one possibility is to conduct an experiment on a cell population and make a sequence of images of the population over the course of the experiment. If a mapping is at hand, which determines which cell it is that is the cause of each measured cell in the image sequence, time resolved single-cell data can be extracted. Such a mapping is called a lineage tree, and the process of creating it is called tracking. One aim of this work is to develop a tracking algorithm that incorporates organism specific knowledge, such as average division time, in the tracking process. With respect to this aim, a Bayesian model that incorporates biological knowledge is derived, with which every hypothetical lineage tree can be assigned a probability. Additionally, two Monte Carlo algorithms are developed, that approximate the probability distribution of lineage trees given by the Bayesian model. When an approximate distribution is known, for example the most likely lineage tree can be extracted and used. In many cases, the information provided to an automatic tracking algorithm is insufficient for the algorithm to find the gold standard lineage tree. In these cases, a possibility is to construct the gold standard lineage tree by manual correction of the lineage tree that has been provided by the tracking algorithm. A second aim of this work is to provide a confidence to every assignment in a lineage tree, in order to give the person doing manual corrections useful information about what assignments to change. Such a confidence is provided by the Monte Carlo tracking methods developed in this work.I enskild-cell analys studeras de fysiologiska tillstÄndet hos enskilda celler. I vissa studier Àr man intresserad av hur nÄgon cellegenskap utvecklas över tid. Ett sÀtt att generera tidsupplöst data pÄ enskild-cellnivÄ Àr att utföra ett experiment med en cellpopulation och avbilda den med mikroskop med jÀmna mellanrum. Med hjÀlp av en avbildning som beskriver vilken cell i experiment det Àr som ger upphov till vilken uppmÀtt cell i bildsekvensen, kan sedan enskild-cell data tillgÄs. En sÄdan avbildning kallas ett stamtrÀd (lineage tree), och processen att bestÀmma stamtrÀdet kallas tracking. En mÄlsÀttning med detta arbete Àr att utveckla en trackingalgoritm som anvÀnder organismspecifik kunskap, sÄsom organismens genomsnittliga delningstid, i trackingprocessen. Med denna mÄlsÀttning i hÀnseende hÀrleds en bayesiansk modell med vilken varje stamtrÀd kan tillskrivas en sannolikhet, och som kan ta hÀnsyn till biologisk fakta nÀr detta sker. DÀrtill utvecklas tvÄ Monte Carlo algoritmer som approximerar sannolikhetsfördelningen av stamtrÀd som hÀrrör ur den bayesianska modellen. NÀr en uppskattad fördelning Àr kÀnd kan t ex det mest sannolika stamtrÀdet i fördelningen anvÀndas för enskild-cell analys. I mÄnga fall Àr informationen som en automatisk trackingalgoritm har till hands inte tillrÀcklig för att algoritmen ska kunna producera gold standard stamtrÀdet. I dessa fall kan det vara befogat att konstruera gold standard stamtrÀdet genom att göra manuella korrektioner pÄ ett stamtrÀd som tagits fram automatiskt med en algoritm. En andra mÄlsÀttning med detta arbete Àr att införa ett förtroendemÄtt för enskilda lÀnkar i ett stamtrÀd. Detta förtroendemÄtt ska göra det enklare för personen som gör manuella korrektioner att avgöra ifall en lÀnk i ett stamtrÀd behöver korrigeras eller ej. Ett sÄdant förtroendemÄtt införs, och de tvÄ Monte Carlo algoritmerna som utvecklas i detta arbete tillskriver ett förtroende för varje lÀnk i de stamtrÀd som de levererar

    Determination of essential phenotypic elements of clusters in high-dimensional entities—DEPECHE

    No full text
    Technological advances have facilitated an exponential increase in the amount of information that can be derived from single cells, necessitating new computational tools that can make such highly complex data interpretable. Here, we introduce DEPECHE, a rapid, parameter free, sparse k-means-based algorithm for clustering of multi- and megavariate single-cell data. In a number of computational benchmarks aimed at evaluating the capacity to form biologically relevant clusters, including flow/mass-cytometry and single cell RNA sequencing data sets with manually curated gold standard solutions, DEPECHE clusters as well or better than the currently available best performing clustering algorithms. However, the main advantage of DEPECHE, compared to the state-of-the-art, is its unique ability to enhance interpretability of the formed clusters, in that it only retains variables relevant for cluster separation, thereby facilitating computational efficient analyses as well as understanding of complex datasets. DEPECHE is implemented in the open source R package DepecheR currently available at github.com/Theorell/DepecheR
    corecore