153 research outputs found

    Limited neuropeptide Y precursor processing in unfavourable metastatic neuroblastoma tumours

    Get PDF
    Neuropeptide Y (NPY) is found at high concentrations in neural crest-derived tumours and has been implicated as a regulatory peptide in tumour growth and differentiation. Neuroblastomas, ganglioneuromas and phaeochromocytomas with significant concentrations of NPY-like immunoreactivity were investigated for different molecular forms of NPY and for significance of proNPY processing. Gel-permeation chromatography identified intact NPY (1–36) in all tumours, whereas proNPY (69 amino acids) was detected only in control adrenal tissue and malignant neuroblastomas. Purification of NPY-like immunoreactivity in tumour extracts and structural characterization revealed that both NPY (1–36) and the truncated form NPY (3–36) was present. The degree of processing of proNPY to NPY in tumour tissue was lower in advanced neuroblastomas with regional or metastatic spread (stage 3 and 4) (n = 6), (41%, 12–100%, median, range), compared to the less aggressive stage 1, 2 and 4S tumours (n = 12), (93%; 69–100%), (P = 0.012). ProNPY processing of less than 50% was correlated with poor clinical outcome (P = 0.004). MYCN oncogene amplification was also correlated to a low degree of proNPY processing (P = 0.025). In summary, a low degree of proNPY processing was correlated to clinical advanced stage and poor outcome in neuroblastomas. ProNPY/NPY processing generated molecular forms of NPY with known differences in NPY-receptor selectivity, implicating a potential for in vivo modulation of NPY-like effects in tumour tissue. © 2000 Cancer Research Campaig

    Contextual Simulated Annealing Q-Learning for Pre-negotiation of Agent-Based Bilateral Negotiations

    Get PDF
    Electricity markets are complex environments, which have been suffering continuous transformations due to the increase of renewable based generation and the introduction of new players in the system. In this context, players are forced to re-think their behavior and learn how to act in this dynamic environment in order to get as much benefit as possible from market negotiations. This paper introduces a new learning model to enable players identifying the expected prices of future bilateral agreements, as a way to improve the decision-making process in deciding the opponent players to approach for actual negotiations. The proposed model introduces a con-textual dimension in the well-known Q-Learning algorithm, and includes a simulated annealing process to accelerate the convergence process. The proposed model is integrated in a multi-agent decision support system for electricity market players negotiations, enabling the experimentation of results using real data from the Iberian electricity market.This work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019.info:eu-repo/semantics/publishedVersio

    Overcoming challenges regarding reference materials and regulations that influence global standardization of medical laboratory testing results

    Get PDF
    Background: Standardized results for laboratory tests are particularly important when their interpretation depends on fixed medical practice guidelines or common reference intervals. The medical laboratory community has developed a roadmap for an infrastructure to achieve standardized test results described in the International Organization for Standardization standard 17511:2020 In vitro diagnostic medical devices - Requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples. Among the challenges to implementing metrological traceability are the availability of fit-for-purpose matrix-based certified reference materials (CRMs) and requirements for regulatory review that differ among countries. A workshop in December 2021 focused on these two challenges and developed recommendations for improved practices. Discussion: The participants agreed that prioritization of measurands for standardization should be based on their impact on medical decisions in a clinical pathway. Ensuring that matrix-based CRMs are globally available for more measurands will enable fit-for-purpose calibration hierarchies for more laboratory tests. Regulation of laboratory tests is important to ensure safety and effectiveness for the populations served. Because regulations are country or region specific, manufacturers must submit recalibration changes intended to standardize results for regulatory review to all areas in which a measuring system is marketed. Recommendations: A standardization initiative requires collaboration and planning among all interested stakeholders. Global collaboration should be further developed for prioritization of measurands for standardization, and for coordinating the production and supply of CRMs worldwide. More uniform regulatory submission requirements are desirable when recalibration is implemented to achieve internationally standardized results.Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL

    Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness

    Get PDF
    Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment

    Cortisol in hair measured in young adults - a biomarker of major life stressors?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress as a cause of illness has been firmly established. In public health and stress research a retrospective biomarker of extended stress would be an indispensible aid. The objective of this pilot study was to investigate whether concentrations of cortisol in hair correlate with perceived stress, experiences of serious life events, and perceived health in young adults.</p> <p>Methods</p> <p>Hair samples were cut from the posterior vertex area of (n = 99) university students who also answered a questionnaire covering experiences of serious life events, perceived Stress Scale and perceived health during the last three months. Cortisol was measured using a competitive radioimmunoassay in methanol extracts of hair samples frozen in liquid nitrogen and mechanically pulverised.</p> <p>Results</p> <p>Mean cortisol levels were significantly related to serious life events (p = 0.045), weakly negatively correlated to perceived stress (p = 0.025, r = -0.061) but nor affected by sex, coloured/permed hair, intake of pharmaceuticals or self-reported health. In a multiple regression model, only the indicator of serious life events had an independent (p = 0.041) explanation of increased levels of cortisol in hair. Out of four outliers with extremely high cortisol levels two could be contacted, both reported serious psychological problems.</p> <p>Conclusions</p> <p>These findings suggest that measurement of cortisol in hair could serve as a retrospective biomarker of increased cortisol production reflecting exposure to major life stressors and possibly extended psychological illness with important implications for research, clinical practice and public health. Experience of serious life events seems to be more important in raising cortisol levels in hair than perceived stress.</p

    Neurotensin Receptor 1 Is Expressed in Gastrointestinal Stromal Tumors but Not in Interstitial Cells of Cajal

    Get PDF
    Gastrointestinal stromal tumors (GIST) are thought to derive from the interstitial cells of Cajal (ICC) or an ICC precursor. Oncogenic mutations of the KIT or PDGFRA receptor tyrosine kinases are present in the majority of GIST, leading to ligand-independent activation of the intracellular signal transduction pathways. We previously investigated the gene expression profile in the murine KitK641E GIST model and identified Ntsr1 mRNA, encoding the Neurotensin receptor 1, amongst the upregulated genes. Here we characterized Ntsr1 mRNA and protein expression in the murine KitK641E GIST model and in tissue microarrays of human GIST. Ntsr1 mRNA upregulation in KitK641E animals was confirmed by quantitative PCR. Ntsr1 immunoreactivity was not detected in the Kit positive ICC of WT mice, but was present in the Kit positive hyperplasia of KitK641E mice. In the normal human gut, NTSR1 immunoreactivity was detected in myenteric neurons but not in KIT positive ICC. Two independent tissue microarrays, including a total of 97 GIST, revealed NTSR1 immunoreactivity in all specimens, including the KIT negative GIST with PDGFRA mutation. NTSR1 immunoreactivity exhibited nuclear, cytoplasmic or mixed patterns, which might relate to variable levels of NTSR1 activation. As studies using radio-labeled NTSR1 ligand analogues for whole body tumor imaging and for targeted therapeutic interventions have already been reported, this study opens new perspectives for similar approaches in GIST

    Neuropeptidomics of the Supraoptic Rat Nucleus

    Get PDF
    The mammalian supraoptic nucleus (SON) is a neuroendocrine center in the brain regulating a variety of physiological functions. Within the SON, peptidergic magnocellular neurons that project to the neurohypophysis (posterior pituitary) are involved in controlling osmotic balance, lactation, and parturition, partly through secretion of signaling peptides such as oxytocin and vasopressin into the blood. An improved understanding of SON activity and function requires identification and characteriza-tion of the peptides used by the SON. Here, small-volume sample preparation approaches are optimized for neuropeptidomic studies of isolated SON samples ranging from entire nuclei down to single magnocellular neurons. Unlike most previous mammalian peptidome studies, tissues are not im-mediately heated or microwaved. SON samples are obtained from ex vivo brain slice preparations via tissue punch and the samples processed through sequential steps of peptide extraction. Analyses of the samples via liquid chromatography mass spectrometry and tandem mass spectrometry result in the identification of 85 peptides, including 20 unique peptides from known prohormones. As the sample size is further reduced, the depth of peptide coverage decreases; however, even from individually isolated magnocellular neuroendocrine cells, vasopressin and several other peptides are detected
    • 

    corecore