63 research outputs found

    Heterarchy of Transcription Factors Driving Basal and Luminal Cell Phenotypes in Human Urothelium

    Get PDF
    Cell differentiation is effected by complex networks of transcription factors that co-ordinate re-organisation of the chromatin landscape. The hierarchies of these relationships can be difficult to dissect. During in vitro differentiation of normal human uro-epithelial cells, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and RNA-seq were used to identify alterations in chromatin accessibility and gene expression changes following activation of the nuclear receptor PPARG as a differentiation-initiating event. Regions of chromatin identified by FAIRE-seq as having altered accessibility during differentiation were found to be enriched with sequence-specific binding motifs for transcription factors predicted to be involved in driving basal and differentiated urothelial cell phenotypes, including FOXA1, P63, GRHL2, CTCF and GATA3. In addition, co-occurrence of GATA3 motifs was observed within sub-sets of differentiation-specific peaks containing P63 or FOXA1 after induction of differentiation. Changes in abundance of GRHL2, GATA3, and P63 were observed in immunoblots of chromatin-enriched extracts. Transient siRNA knockdown of P63 revealed that P63 favoured a basal-like phenotype by inhibiting differentiation and promoting expression of basal marker genes. GATA3 siRNA prevented differentiation-associated downregulation of P63 protein and transcript, and demonstrated positive feedback of GATA3 on PPARG transcript, but showed no effect on FOXA1 transcript or protein expression. This approach indicates that as a transcriptionally-regulated programme, urothelial differentiation operates as a heterarchy wherein GATA3 is able to co-operate with FOXA1 to drive expression of luminal marker genes, but that P63 has potential to transrepress expression of the same genes

    Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels

    Get PDF
    Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity

    The Role of Purported Mucoprotectants in Dealing with Irritable Bowel Syndrome, Functional Diarrhea, and Other Chronic Diarrheal Disorders in Adults

    Get PDF
    Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment

    Full text link
    corecore