15 research outputs found

    A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature

    Get PDF
    Abstract Nature-based solutions (NBS) can protect, manage and restore natural or modified ecosystems. They are a multidisciplinary, integrated approach to address societal challenges and some natural hazards effectively and adaptively, simultaneously providing human well-being and biodiversity benefits. NBS applications can be easily noticed in circular cities, establishing an urban system that is regenerative and accessible. This paper aims to offer a review on NBS for urban water management from the literature and some relevant projects running within the COST Action 'Implementing nature-based solutions for creating a resourceful circular city'. The method used in the study is based on a detailed tracking of specific keywords in the literature using Google Scholar, ResearchGate, Academia.edu, ScienceDirect and Scopus. Based on this review, three main applications were identified: (i) flood and drought protection; (ii) the water-food-energy nexus; and (iii) water purification. The paper shows that NBS provide additional benefits, such as improving water quality, increasing biodiversity, obtaining social co-benefits, improving urban microclimate, and the reduction of energy consumption by improving indoor climate. The paper concludes that a systemic change to NBS should be given a higher priority and be preferred over conventional water infrastructure

    Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges

    Get PDF
    Nature-Based Solutions (NBS) have been proven to effectively mitigate and solve resource depletion and climate-related challenges in urban areas. The COST (Cooperation in Science and Technology) Action CA17133 entitled “Implementing nature-based solutions (NBS) for building a resourceful circular city” has established seven urban circularity challenges (UCC) that can be addressed effectively with NBS. This paper presents the outcomes of five elucidation workshops with more than 20 European experts from different backgrounds. These international workshops were used to examine the effectiveness of NBS to address UCC and foster NBS implementation towards circular urban water management. A major outcome was the identification of the two most relevant challenges for water resources in urban areas: ‘Restoring and maintaining the water cycle’ (UCC1) and ‘Water and waste treatment, recovery, and reuse’ (UCC2). s Moreover, significant synergies with ‘Nutrient recovery and reuse’, ‘Material recovery and reuse’, ‘Food and biomass production’, ‘Energy efficiency and recovery’, and ‘Building system recovery’ were identified. Additionally, the paper presents real-life case studies to demonstrate how different NBS and supporting units can contribute to the UCC. Finally, a case-based semi-quantitative assessment of the presented NBS was performed. Most notably, this paper identifies the most typically employed NBS that enable processes for UCC1 and UCC2. While current consensus is well established by experts in individual NBS, we presently highlight the potential to address UCC by combining different NBS and synergize enabling processes. This study presents a new paradigm and aims to enhance awareness on the ability of NBS to solve multiple urban circularity issues.publishedVersio

    Towards a Cross-Sectoral View of Nature-Based Solutions for Enabling Circular Cities

    Get PDF
    A framework developed by the COST Action Circular City (an EU-funded network of 500+ scientists from 40+ countries; COST = Cooperation in Science and Technology) for addressing Urban Circularity Challenges (UCCs) with nature-based solutions (NBSs) was analyzed by various urban sectors which refer to different fields of activities for circular management of resources in cities (i.e., reducing use of resources and production of waste). The urban sectors comprise the built environment, urban water management, resource recovery, and urban farming. We present main findings from sector analyses, discuss different sector perspectives, and show ways to overcome these differences. The results reveal the potential of NBSs to address multiple sectors, as well as multiple UCCs. While water has been identified as a key element when using NBSs in the urban environment, most NBSs are interconnected and also present secondary benefits for other resources. Using representative examples, we discuss how a holistic and systemic approach could facilitate the circular use of resources in cities. Currently, there is often a disciplinary focus on one resource when applying NBSs. The full potential of NBSs to address multifunctionality is, thus, usually not fully accounted for. On the basis of our results, we conclude that experts from various disciplines can engage in a cross-sectoral exchange and identify the full potential of NBSs to recover resources in circular cities and provide secondary benefits to improve the livelihood for locals. This is an important first step toward the full multifunctionality potential enabling of NBSs

    Detailed Geophysical Mapping and Hydrogeological Characterisation of the Subsurface for Optimal Placement of Infiltration-Based Sustainable Urban Drainage Systems

    No full text
    The continuous growth of cities in combination with future climate changes present urban planners with significant challenges, as traditional urban sewer systems are typically designed for the present climate. An easy and economically feasible way to mitigate this is to introduce a Sustainable Urban Drainage System (SUDS) in the urban area. However, the lack of knowledge about the geological and hydrogeological setting hampers the use of SUDS. In this study, 1315 ha of high-density electromagnetic (DUALEM-421S) data, detailed lithological soil descriptions of 614 boreholes, 153 infiltration tests and 250 in situ vane tests from 32 different sites in the Central Denmark Region were utilised to find quantitative and qualitative regional relationships between the resistivity and the lithology, the percolation rates and the undrained shear strength of cohesive soils at a depth of 1 meter below ground surface (m bgs). The qualitative tests enable a translation from resistivity to lithology as well as a translation from lithology to percolation rates with moderate to high certainty. The regional cut-off value separating sand-dominated deposits from clay-dominated deposits is found to be between 80 to 100 Ωm. The regional median percolation rates for sand and clay till is found to be 9.9 × 10−5 m/s and 2.6 × 10−5 m/s, respectively. The quantitative results derived from a simple linear regression analysis of resistivity and percolation rates and resistivity and undrained shear strength of cohesive soils are found to have a very weak relationship on a regional scale implying that in reality no meaningful relationships can be established. The regional qualitative results have been tested on a case study area. The case study illustrates that site-specific investigations are necessary when using geophysical mapping to directly estimate lithology, percolation rates and undrained shear strength of cohesive soils due to the differences in soil properties and the surrounding environment from site to site. This study further illustrates that geophysical mapping in combination with lithological descriptions, infiltration tests and groundwater levels yield the basis for the construction of detailed planning maps showing the most suitable locations for infiltration. These maps provide valuable information for city planners about which areas may preclude the establishment of infiltration-based SUDS

    The Climate Road—A Multifunctional Full-Scale Demonstration Road That Prevents Flooding and Produces Green Energy

    No full text
    This paper presents a multifunctional full-scale demonstration road, the Climate Road, which combines climate adaptation and mitigation in a single system. The Climate Road is located at Hedensted, Denmark and is 50 m long and 8 m wide, and the depth of the roadbed is 1 m. Half of the Climate Road, i.e., 25 m, is paved with permeable asphalt and the remaining 25 m with traditional asphalt. All surface water drains into the roadbed, which stores up to 120 m3 of water, either directly through the permeable asphalt or by drain grates. In addition, 800 m of geothermal pipes are embedded in the roadbed, distributed over four 200 m w-loops, two buried 1 m below the asphalt and two similar loops at 0.5 m depth. The Climate Road was tested from May 2019 to May 2021. In the project period, a total precipitation value of 1654 mm was recorded, the mean temperature was 9.3 °C and the most intense rainfall was 40.3 mm/30 min. The long-term infiltration performance of the permeable asphalt shows that the overall infiltration capacity slowly reduces. The reduction can be hindered, but not completely prevented, with annual restorative cleaning. After two years of operation, the Climate Road still, by a large margin, fulfils the recommendations of the infiltration capacity of 97.2 mm/h for the vast majority of the road section. The total volume reduction capacity is estimated to be between 15 and 30%. Based on an analysis of 61 single rain events, the event detention time is found to range between 10 and 130 min, with an average of 35 min. During the project period, the Climate Road produced a total of 98 MWh for a nearby kindergarten, with an average coefficient of performance (COP) of 3.1

    Full-Scale Demonstration of Combined Ground Source Heating and Sustainable Urban Drainage in Roadbeds

    No full text
    This paper proposes and demonstrates, in full scale, a novel type of energy geostructure (“the Climate Road”) that combines a ground-source heat pump (GSHP) with a sustainable urban drainage system (SUDS) by utilizing the gravel roadbed simultaneously as an energy source and a rainwater retarding basin. The Climate Road measures 50 m × 8 m × 1 m (length, width, depth, respectively) and has 800 m of geothermal piping embedded in the roadbed, serving as the heat collector for a GSHP that supplies a nearby kindergarten with domestic hot water and space heating. Model analysis of operational data from 2018–2021 indicates sustainable annual heat production levels of around 0.6 MWh per meter road, with a COP of 2.9–3.1. The continued infiltration of rainwater into the roadbed increases the amount of extractable heat by an estimated 17% compared to the case of zero infiltration. Using the developed model for scenario analysis, we find that draining rainwater from three single-family houses and storing 30% of the annual heating consumption in the roadbed increases the predicted extractable energy by 56% compared to zero infiltration with no seasonal energy storage. The Climate Road is capable of supplying three new single-family houses with heating, cooling, and rainwater management year-round

    The Climate Road—A Multifunctional Full-Scale Demonstration Road That Prevents Flooding and Produces Green Energy

    No full text
    This paper presents a multifunctional full-scale demonstration road, the Climate Road, which combines climate adaptation and mitigation in a single system. The Climate Road is located at Hedensted, Denmark and is 50 m long and 8 m wide, and the depth of the roadbed is 1 m. Half of the Climate Road, i.e., 25 m, is paved with permeable asphalt and the remaining 25 m with traditional asphalt. All surface water drains into the roadbed, which stores up to 120 m3 of water, either directly through the permeable asphalt or by drain grates. In addition, 800 m of geothermal pipes are embedded in the roadbed, distributed over four 200 m w-loops, two buried 1 m below the asphalt and two similar loops at 0.5 m depth. The Climate Road was tested from May 2019 to May 2021. In the project period, a total precipitation value of 1654 mm was recorded, the mean temperature was 9.3 °C and the most intense rainfall was 40.3 mm/30 min. The long-term infiltration performance of the permeable asphalt shows that the overall infiltration capacity slowly reduces. The reduction can be hindered, but not completely prevented, with annual restorative cleaning. After two years of operation, the Climate Road still, by a large margin, fulfils the recommendations of the infiltration capacity of 97.2 mm/h for the vast majority of the road section. The total volume reduction capacity is estimated to be between 15 and 30%. Based on an analysis of 61 single rain events, the event detention time is found to range between 10 and 130 min, with an average of 35 min. During the project period, the Climate Road produced a total of 98 MWh for a nearby kindergarten, with an average coefficient of performance (COP) of 3.1

    The Langeland Fault System unravelled: Quaternary fault reactivation along an elevated basement block between the North German and Norwegian–Danish basins

    No full text
    The reactivation of faults and possible impact on barrier integrity marks a critical aspect for investigations on subsurface usage capabilities. Glacial isostatic adjustments, originating from repeated Quaternary glaciations of northern Europe, cause tectonic stresses on pre‐existing fault systems and structural elements of the North German and Norwegian–Danish basins. Notably, our current understanding of the dynamics and scales of glacially induced fault reactivation is rather limited. A high‐resolution 2D seismic data set recently acquired offshore northeastern Langeland Island allows the investigation of a fault and graben system termed the Langeland Fault System. Seismo‐stratigraphic interpretation of reflection seismic data in combination with diffraction imaging unravels the spatial character of the Langeland Fault System along an elevated basement block of the Ringkøbing–Fyn High. In combination with sediment echosounder data, the data set helps to visualize the continuation of deep‐rooted faults up to the sea floor. Initial Mesozoic faulting occurred during the Triassic. Late Cretaceous inversion reactivated a basement fault flanking the southern border of the elevated basement block of the Ringkøbing–Fyn High while inversion is absent in the Langeland Fault System. Here, normal faulting occurred in the Maastrichtian–Danian. We show that a glacial or postglacial fault reactivation occurred within the Langeland Fault System, as evident by the propagation of the faults from the deeper subsurface up to the sea floor, dissecting glacial and postglacial successions. Our findings suggest that the Langeland Fault System was reactivated over a length scale of a minimum of 8.5 km. We discuss the causes for this Quaternary fault reactivations in the context of glacially induced faulting and the present‐day stress field. The combination of imaging techniques with different penetration depths and vertical resolution used in this study is rarely realized in the hinterland. It can therefore be speculated that many more inherited, deep‐rooted faults were reactivated in Pleistocene glaciated regions.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659https://doi.org/10.1594/PANGAEA.95401

    Identification and evaluation of Lonicera japonica flos introduced to the Hailuogou area based on ITS sequences and active compounds

    No full text
    Lonicera japonica flos (LJF), the dried flower buds of L. japonica Thunb., have been used in traditional Chinese herbal medicine for thousands of years. Recent studies have reported that LJF has many medicinal properties because of its antioxidative, hypoglycemic, hypolipidemic, anti-allergic, anti-inflammatory, and antibacterial effects. LJF is widely used in China in foods and healthcare products, and is contained in more than 30% of current traditional Chinese medicine prescriptions. Because of this, many Chinese villages cultivate LJF instead of traditional crops due to its high commercial value in the herbal medicine market. Since 2005, the flower buds of L. japonica are the only original LJF parts considered according to the Chinese Pharmacopoeia of the People’s Republic of China. However, for historical and commercial reasons, some closely related species of Lonicera Linn. continue to be mislabeled and used as LJF. Currently, there are hundreds of commercial varieties of LJF on the market and it is difficult to choose fine LJF varieties to cultivate. In this study, a total of 21 varieties labeled as LJF on the market were planted in the Hailuogou area. In order to choose the optimum variety, internal transcribed spacer (ITS) sequence alignment analysis was used to test whether the 21 varieties were genuine LJF or not. Cluster analysis of active components based on the content of chlorogenic acid and luteoloside in flower buds, stems and leaves was used to evaluate the quality of the varieties. Results demonstrated that four of the varieties were L. macranthoides Hand.-Mazz., while the other 17 varieties were L. japonica, and genuine LJF. The ITS sequence analysis was proven to be highly effective in identifying LJF and Lonicerae flos. Among the 17 L. japonica varieties, the amounts of chlorogenic acid and luteoloside in flower buds, stems and leaves were significantly different. Based on the cluster analysis method, the variety H11 was observed to have the highest level of active components, and is therefore recommended for large-scale planting in the Hailuogou area
    corecore