235 research outputs found

    Investigation of the realignment of the exchange bias in spintronic layer stacks using laser radiation

    Get PDF
    Die vorliegende Arbeit befasst sich mit der gezielten Neuorientierung des Exchange Bias in spintronischen Schichtsystemen durch selektive Aufheizung mittels fokussierter Laserstrahlung im externen Magnetfeld. Hierbei wird der Einfluss der Prozessparameter auf die resultierende Exchange Bias Feldstärke dargestellt. Neben experimentellen Untersuchungen wird die laserinduzierte Aufheizung durch Temperaturfeldsimulationen charakterisiert. Erste Untersuchungen zur Anwendung des lasergestützten Verfahrens auf Leiterbahn-strukturen werden vorgestellt

    DNA amplifications at 20q13 and MDM2 define distinct subsets of evolved breast and ovarian tumours.

    Get PDF
    DNA amplification seems to be particularly frequent in human breast tumours and has been associated with cancer evolution and aggressiveness. Recent data indicate that new events should be added to the list, such as the amplifications at chromosome 20q13 or the MDM2 gene. The present work aimed at determining the incidence and clinicopathological signification of these amplifications in a large series of breast and ovarian tumours. We tested 1371 breast and 179 ovarian tumours by Southern blotting and observed amplification of 20q13 in 5.4% breast and 2.8% ovarian carcinomas, whereas MDM2 was found amplified in 5.3% and 3.8% of breast and ovarian tumours respectively. MDM2 RNA expression levels were analysed in a subset of 57 breast tumours and overexpression was observed in 4/57 (7%) of the tumours. Elevated expression levels coincided with amplification of the gene. In breast cancer, 20q13 and MDM2 amplifications seem to define subsets of aggressive tumours. Indeed, 20q13 was correlated to axillary nodal involvement and occurred preferentially in younger patients (< 50 years). Furthermore, 20q13 correlated, as did MDM2 amplification, to aneuploidy. In parallel, we had also tested our tumour DNAs for amplification of CCND1, ERBB-2 and MYC, which made it possible to test for correlations with 20q13 or MDM2 amplifications. Whereas 20q13 showed a very strong correlation to CCND1 amplification, that of MDM2 was prevalent in MYC-amplified tumours. Interestingly, 20q13 and MDM2 amplifications showed some degree of correlation to each other, which may possibly be owing to the fact that both events occurred preferentially in aneuploid tumours. In ovarian cancer, no statistically significant correlation was observed. However, 20q13 amplification occurred preferentially in stage 3 tumours and MDM2 was correlated to ERBB-2 amplification. This may suggest that in ovarian tumours also, 20q13 and MDM2 amplifications occur in late or aggressive cancers

    Breast tumors: an overview

    Get PDF
    Review on Breast tumors: an overview, with data on clinics, and the genes involved

    Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data

    Get PDF
    We present Farseer-NMR (https://git.io/vAueU), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems’ responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension

    Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation.

    Get PDF
    Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity

    Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q

    Get PDF
    Chromosome 1 is involved in quantitative anomalies in 50–60% of breast tumours. However, the structure of these anomalies and the identity of the affected genes remain to be determined. To characterise these anomalies and define their consequences on gene expression, we undertook a study combining array-CGH analysis and expression profiling using specialised arrays. Array-CGH data showed that 1p was predominantly involved in losses and 1q almost exclusively in gains. Noticeably, high magnitude amplification was infrequent. In an attempt to fine map regions of copy number changes, we defined 19 shortest regions of overlap (SROs) for gains (one at 1p and 18 at 1q) and of 20 SROs for losses (all at 1p). These SROs, whose sizes ranged from 170 kb to 3.2 Mb, represented the smallest genomic intervals possible based on the resolution of our array. The elevated incidence of gains at 1q, added to the well-established concordance between DNA copy increase and augmented RNA expression, made us focus on gene expression changes at this chromosomal arm. To identify candidate oncogenes, we studied the RNA expression profiles of 307 genes located at 1q using a home-made built cDNA array. We identified 30 candidate genes showing significant overexpression correlated to copy number increase. In order to substantiate their involvement, RNA expression levels of these candidate genes were measured by quantitative (Q)-RT–PCR in a panel of 25 breast cancer cell lines previously typed by array-CGH. Q–PCR showed that 11 genes were significantly overexpressed in the presence of a genomic gain in these cell lines, and 20 overexpressed when compared to normal breast

    Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer

    Get PDF
    International audienceIntroduction: Breast cancers are traditionally divided into hormone-receptor positive and negative cases. This classification helps to guide patient management. However, a subgroup of hormone-receptor positive patients relapse irrespective of hormonal therapy. Gene expression profiling has classified breast tumours into five major subtypes with significant different outcome. The two luminal subtypes, A and B, show high expression of ESR1, GATA3 and FOXA1 genes. Prognostic biomarkers for oestrogen receptor (ER)-positive cases include progesterone receptor (PR) and androgen receptor (AR), and proteins related to proliferation or apoptotic resistance. The aim of this study was to identify the best predictors of success of hormonal therapy.Methods: By immunohistochemistry we studied 10 markers in a consecutive series of 832 cases of breast carcinoma treated at the Paoli-Calmettes Institute from 1990 to 2002 and deposited onto tissue microarrays (TMA). These markers were luminal-related markers ER, PR, AR, FOXA1 and GATA3 transcription factors, proliferation-related Ki67 and CCND1, ERBB2, anti-apoptotic BCL2 and P53. We also measured vascular peritumoural invasion (VPI), size, grade and lymph node involvement. For 143 cases, gene expression profiles were available. Adjuvant chemotherapy and hormonal therapy were given to high- and low-risk patients, respectively. The 162 events observed and taken into account were metastases.Results: Molecular expression of the 10 parameters and subtype with ER status were strongly correlated. Of the 67 luminal A cases of this series, 63 were ER-positive. Multivariate analyses showed the highly significant prognostic value of VPI (hazard ratio (HR) = 2.47), Ki67 (HR = 2.9), P53 (HR = 2.9) and GATA3 (HR = 0.5) for the 240 patients who received hormonal therapy.Conclusions: A panel of three antibodies (Ki67, P53 and GATA3) associated with VPI can significantly improve the traditional prognosticators in predicting outcome for ER-positive breast cancer patients receiving hormonal therapy

    Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    Get PDF
    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1H magnetization without adversely affecting storage on N z during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies

    Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors

    Get PDF
    The fibroblast growth factors [Fgfs (murine), FGFs (human)] constitute a large family of ligands that signal through a class of cell-surface tyrosine kinase receptors. Fgf signalling has been associated in vitro with cellular differentiation as well as mitogenic and motogenic responses. In vivo, Fgfs are critical for animal development, and some have potent angiogenic properties. Several Fgfs have been identified as oncogenes in murine mammary cancer, where their deregulation is associated with proviral insertions of the mouse mammary tumour virus (MMTV). Thus, in some mammary tumours of MMTV-infected mouse strains, integration of viral genomic DNA into the somatic DNA of mammary epithelial cells was found to have caused the inappropriate expression of members of this family of growth factors. Although examination of human breast cancers has shown an altered expression of FGFs or of their receptors in some tumours, their role in the causation of breast disease is unclear and remains controversial
    • …
    corecore