322 research outputs found
How simple can a model of an empty viral capsid be? Charge distributions in viral capsids
We investigate and quantify salient features of the charge distributions on
viral capsids. Our analysis combines the experimentally determined capsid
geometry with simple models for ionization of amino acids, thus yielding the
detailed description of spatial distribution for positive and negative charge
across the capsid wall. The obtained data is processed in order to extract the
mean radii of distributions, surface charge densities and dipole moment
densities. The results are evaluated and examined in light of previously
proposed models of capsid charge distributions, which are shown to have to some
extent limited value when applied to real viruses.Comment: 10 pages, 10 figures; accepted for publication in Journal of
Biological Physic
Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium
Clostridium autoethanogenum is an acetogenic bacterium capable of producing high value commodity chemicals and biofuels from the C1 gases present in synthesis gas. This common industrial waste gas can act as the sole energy and carbon source for the bacterium that converts the low value gaseous components into cellular building blocks and industrially relevant products via the action of the reductive acetyl-CoA (Wood-Ljungdahl) pathway. Current research efforts are focused on the enhancement and extension of product formation in this organism via synthetic biology approaches. However, crucial to metabolic modelling and directed pathway engineering is a reliable and comprehensively annotated genome sequence
Identification of Potent EGFR Inhibitors from TCM Database@Taiwan
Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858) and SVM (r² = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q² = 0.721, r² = 0.986) and CoMSIA (q² = 0.662, r² = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University (CMU98-TCM)China Medical University (CMU99-TCM)China Medical University (CMU99-S-02)China Medical University (CMU99-ASIA-25)China Medical University (CMU99-ASIA-26)China Medical University (CMU99-ASIA-27)China Medical University (CMU99-ASIA-28)Asia UniversityTaiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
SalmoNet, an integrated network of ten Salmonella enterica strains reveals common and distinct pathways to host adaptation
Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be classified as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly, in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-protein interaction levels. SalmoNet provides the networks separately for five gastro-intestinal and five extra-intestinal strains. As a multi-layered, multi-strain database containing experimental data, SalmoNet is the first dedicated network resource for Salmonella. It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at specific loci in more detail. Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org
MACiE: exploring the diversity of biochemical reactions
MACiE (which stands for Mechanism, Annotation and Classification in Enzymes) is a database of enzyme reaction mechanisms, and can be accessed from http://www.ebi.ac.uk/thornton-srv/databases/MACiE/. This article presents the release of Version 3 of MACiE, which not only extends the dataset to 335 entries, covering 182 of the EC sub-subclasses with a crystal structure available (∼90%), but also incorporates greater chemical and structural detail. This version of MACiE represents a shift in emphasis for new entries, from non-homologous representatives covering EC reaction space to enzymes with mechanisms of interest to our users and collaborators with a view to exploring the chemical diversity of life. We present new tools for exploring the data in MACiE and comparing entries as well as new analyses of the data and new searches, many of which can now be accessed via dedicated Perl scripts
A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells
Background
The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs).
Methods
rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0.
Results
Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings.
Conclusions
Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions
Predicted sub-populations in a marine shrimp proteome as revealed by combined EST and cDNA data from multiple Penaeus species
Bovine Genome Database: supporting community annotation and analysis of the Bos taurus genome
Metabolic pathway alignment between species using a comprehensive and flexible similarity measure
Comparative analysis of metabolic networks in multiple species yields important information on their evolution, and has great practical value in metabolic engineering, human disease analysis, drug design etc. In this work, we aim to systematically search for conserved pathways in two species, quantify their similarities, and focus on the variations between themElectrical Engineering, Mathematics and Computer Scienc
- …
