49 research outputs found

    Δ-6 desaturase substrate competition : dietary linoleic acid (18∶2n-6) has only trivial effects on α-linolenic acid (18∶3n-3) bioconversion in the teleost rainbow trout

    Get PDF
    It is generally accepted that, in vertebrates, omega-3 (n-3) and omega-6 (n-6) poly-unsaturated fatty acids (PUFA) compete for ?-6 desaturase enzyme in order to be bioconverted into long-chain PUFA (LC-PUFA). However, recent studies into teleost fatty acid metabolism suggest that these metabolic processes may not conform entirely to what has been previously observed in mammals and other animal models. Recent work on rainbow trout has led us to question specifically if linoleic acid (LA, 18:2n-6) and ?-linolenic acid (ALA, 18:3n-3) (?-6 desaturase substrates) are in direct competition for access to ?-6 desaturase. Two experimental diets were formulated with fixed levels of ALA, while LA levels were varied (high and low) to examine if increased availability of LA would result in decreased bioconversion of ALA to its LC-PUFA products through substrate competition. No significant difference in ALA metabolism towards n-3 LC-PUFA was exhibited between diets while significant differences were observed in LA metabolism towards n-6 LC-PUFA. These results are evidence for minor if any competition between substrates for ?-6 desaturase, suggesting that, paradoxically, the activity of ?-6 desaturase on n-3 and n-6 substrates is independent. These results call for a paradigm shift in the way we approach teleost fatty acid metabolism. The findings are also important with regard to diet formulation in the aquaculture industry as they indicate that there should be no concern for possible substrate competition between 18:3n-3 and 18:2n-6, when aiming at increased n-3 LC-PUFA bioconversion in vivo

    Evaluation of different feeding protocols for larvae of Atlantic bluefin tuna (Thunnus thynnus L.)

    Get PDF
    Mass mortality is still one of the main constraints in larval rearing of Atlantic bluefin tuna (Thunnus thynnus L.; ABT). Early data related to the feeding sequence of ABT larvae suggested that mortality observed during the first stages of life could be partly due to nutritional deficiencies. Previous studies demonstrated that copepods ap- peared to be a superior live prey compared to rotifers during the first 2 weeks of life. Our overarching aim was to evaluate different feeding strategies during first feeding of ABT larvae from a performance, compositional and molecular perspective. In order to do so, two groups of ABT larvae were fed with either copepod (Acartia tonsa; C) nauplii or rotifers (Brachionus rotundiformis; R) enriched with Algamac 3050® from mouth opening to 13 days after hatching (dah). After this, the group C-larvae was fed either Artemia enriched with Algamac 3050® (CA), Acartia nauplii and copepodites (CC) or sea bream (Sparus aurata) yolk-sac larvae (CY), while the R group were fed on Artemia enriched with Algamac 3050® (RA) up to 18 dah. At 13 dah, larvae fed copepods (C) had grown better than those fed enriched rotifers (R) although there were no significant differences in survival. ABT larvae fed R accumulated highest eicosapentaenoate (EPA) but lowest docosahexaenoate (DHA) and total n-3 long- chain polyunsaturated fatty acids (LC-PUFA) than C-fed larvae, reflecting the dietary contents. There was no activation in the expression of the enzymes involved in EPA and DHA biosynthesis. However, the different live prey showed regulation of transcription factor, digestive enzyme, lipid metabolism and oxidative stress genes. At 18 dah, larvae fed CY and CA treatments were largest in size, with larvae fed RA displaying the lowest growth, with no significant differences in survival among the dietary treatments. The highest DHA contents were found in ABT larvae fed CC and CY, whereas the lowest contents were found in RA-fed larvae. Indeed, larvae fed RA showed the highest level of the intermediate product n-3 docosapentaenoate, which could reflect increased activity of the biosynthetic pathway although this was not supported by gene expression data.Versión del editor2,04

    Preliminary study on the use of synthetic substrate for juvenile stage production of the yabby, Cherax destructor (Clark) (Decapoda: Parastacidae)

    Full text link
    Juvenile Cherax destructor (commonly called the yabby) (mean weight 48.3 mg) were cultured intensively (stocking density 360/m2) under controlled conditions for 48 days. The animals were provided with a combination of food (high protein pellets and/or natural feed organisms attached to a conditioned synthetic substrate) and refuge. Fastest growth and highest yield was recorded when both pellets and the conditioned synthetic material were provided. Although the yabbies sheltered in the synthetic substrate, it did not increase survival. Juvenile yabbies (&lt; 200 mg) were able to graze on small organisms attached to the synthetic material but this ability appeared to decline as the yabbies grew to a larger size. The use of artificial substrates in the intensive nursery phase production of juvenile freshwater crayfish is discussed.<br /

    Effects of Dietary Vitamin B6 Supplementation on Fillet Fatty Acid Composition and Fatty Acid Metabolism of Rainbow Trout Fed Vegetable Oil Based Diets

    Full text link
    Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B6) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and &Delta;-6 and &Delta;-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils

    Short-term food deprivation before a fish oil finishing strategy improves the deposition of n-3 LC-PUFA, but not the washing-out of C18 PUFA in rainbow trout

    Full text link
    This study aimed to test the hypothesis that the efficiency of a finishing period can be improved by reducing the initial fat content of fish fillets, by means of a period of food deprivation. Two groups of rainbow trout (Oncorhynchus mykiss) were fed for an 18-week grow-out period on a vegetable oil-based diet (VO) or a fish oil-based diet (FO). VO fed fish were then split into two sub groups: one (VO/FO) was shifted to the FO diet for 8 weeks, whilst the other (UF/FO) was deprived of food (unfed) for 2 weeks and then fed the FO diet for the remaining 6 weeks. The control treatment (FO/FO) was represented by fish continuously fed FO. The subsequent reduction of total fat in the UF/FO treatment was then responsible for a much faster recovery towards a FO-like fatty acid profile, validating the proposed hypothesis. However, the modification of the fatty acid composition of fish fillets during the feed withholding period, coupled with the postponement of the finishing diet, resulted in only minor beneficial effects of this strategy, and the loss of potential weight gain. However, the n-3 LC-PUFA content in UF/VO fish fillets was significantly higher than fish subjected to the VO/FO treatment.<br /
    corecore