266 research outputs found

    A Method for Studying the Effects of Neurochemicals on Long-Term Compensation in Unilaterally Labyrinthectomized Rats

    Get PDF
    A new method has been developed to study the influence of drugs and toxicants on longterm recovery of dynamics in the horizontal vestibulo-ocular reflex of the rat after hemilabyrinthectomy (HL). HL was performed by injecting sodium arsanilate into the middle ear. The lesion was confirmed by histology. Eye movements elicited by sinusoidal vestibular stimulation, in both light and darkness, were recorded by a search-coil technique and then analyzed by a computer program created with virtual instrument soft-ware, which calculated the gain of the slow-phase velocity (SPV) and the saccades para-meters (frequency, amplitude, and peak velocity) to the lesioned side and to the intact side separately. During the 2-10 week period after HL, repeated analysis of the spontaneous long-term recovery of such parameters revealed a slight but significant reduction of the post-HL asymmetry between SPV gain to the lesioned side and to the intact side. During the follow-up period, a post-HL increase of the phase lead remained unchanged. The reduced number of saccades/min was not completely restored. To test the usefulness of the experimental model for neurochemical investigation of such adaptation, we administered baclofen and toluene to rats 8–12 wk after hemilabyrinthectomy. Baclofen, a specific GABAB agonist, immediately restored the symmetry of SPV gain. By contrast, toluene, which has some effects on the central vestibular system that are related to GABAB transmission, aggravated the asymmetry in both the SPV gain and the number of saccades. We suggest that the experimental model would be useful for studying neurochemical mechanisms in vestibular adaptation processes

    LOW TEMPERATURE BATTERY MONITORING AND CONTROL SYSTEM – LITHIUM-ION LOW TEMPERATURE CASE STUDY

    Get PDF
    This open-ended research project, co-advised by Dr. Prodanov and Dr. Dolan, studies electronic and battery failures at low temperatures (between -70 ºC to 0 ºC). The main battery technology used for this project is Lithium-ion. The research project consists of two systems: the monitoring system and the actuating system. This project accomplishes the first part and assesses the feasibility of measuring the internal impedances of batteries for low-Earth-orbit (LEO) satellites as a means to monitor battery health. It also monitors the effects caused by low temperature conditions through internal impedance measurements from 0 ºC through -70 °C. It includes designing a compact system prototype having dimensions smaller than 16” x 11” x 11.75” and a total weight less than 10% of the battery weight

    Cal Poly EE 518 Electric Power Protection Laboratory

    Get PDF
    Facing a rapidly-changing power industry, the electrical engineering department at Cal Poly San Luis Obispo proposed Advanced Power Systems Initiatives to better prepare its students for entering the power industry. These initiatives call for the creation of a new laboratory curriculum that utilizes microprocessor-based relays to reinforce the fundamental concepts of power system protection. The electric power protection laboratory (EPPL) senior project is the validation of lab manuals written for the planned EE-518 power system protections laboratory looking to be offered in Spring 2020 alongside the current lecture class under the same designation. This report evaluates the lab manual, verifies SEL relay settings, updates experiment requirements and resources, and provides feedback on improving the coursework. The microgrid integrates photovoltaics, real time simulation, and power system protection devices ensuring the future EE 518 laboratory will provide hands-on experience with power system components and operation. The experiments expose students to the capabilities of industry-standard microprocessor-based relays through hands-on procedures that demonstrate common power system protection schemes. Relays studied in this project support transformer, transmission line, and induction motor protection. This senior project and the Cal Poly microgrid project as a whole was created as an initiative by the power engineering faculty and electrical engineering department to provide additional lab course for students concentrating in power engineering

    Lack of Evidence from Studies of Soluble Protein Fragments that Knops Blood Group Polymorphisms in Complement Receptor-Type 1 Are Driven by Malaria

    Get PDF
    Complement receptor-type 1 (CR1, CD35) is the immune-adherence receptor, a complement regulator, and an erythroid receptor for Plasmodium falciparum during merozoite invasion and subsequent rosette formation involving parasitized and non-infected erythrocytes. The non-uniform geographical distribution of Knops blood group CR1 alleles Sl1/2 and McCa/b may result from selective pressures exerted by differential exposure to infectious hazards. Here, four variant short recombinant versions of CR1 were produced and analyzed, focusing on complement control protein modules (CCPs) 15–25 of its ectodomain. These eleven modules encompass a region (CCPs 15–17) key to rosetting, opsonin recognition and complement regulation, as well as the Knops blood group polymorphisms in CCPs 24–25. All four CR1 15–25 variants were monomeric and had similar axial ratios. Modules 21 and 22, despite their double-length inter-modular linker, did not lie side-by-side so as to stabilize a bent-back architecture that would facilitate cooperation between key functional modules and Knops blood group antigens. Indeed, the four CR1 15–25 variants had virtually indistinguishable affinities for immobilized complement fragments C3b (KD = 0.8–1.1 µM) and C4b (KD = 5.0–5.3 µM). They were all equally good co-factors for factor I-catalysed cleavage of C3b and C4b, and they bound equally within a narrow affinity range, to immobilized C1q. No differences between the variants were observed in assays for inhibition of erythrocyte invasion by P. falciparum or for rosette disruption. Neither differences in complement-regulatory functionality, nor interactions with P. falciparum proteins tested here, appear to have driven the non-uniform geographic distribution of these alleles

    Reticulocyte binding protein homologues are key adhesins during erythrocyte invasion by Plasmodium falciparum

    Get PDF
    The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand–receptor interactions. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1 and PfRh4, members of this protein family, bind to red blood cells and function in merozoite invasion during which they undergo a series of proteolytic cleavage events before and during entry into the host cell. The ectodomain of PfRh1 and PfRh4 are processed to produce fragments consistent with cleavage in the transmembrane domain and released into the supernatant, at about the time of invasion, in a manner consistent with rhomboid protease cleavage. Processing of both PfRh1 and PfRh4, and by extrapolation all membrane-bound members of this protein family, is important for function and release of these proteins on the merozoite surface and they along with EBA-175 are important components of the tight junction, the transient structure that links the erythrocyte via receptor–ligand interactions to the actin–myosin motor in the invading merozoite

    Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of <i>Plasmodium falciparum</i> into human erythrocytes

    Get PDF
    An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine

    Whole-genome informed circulating tumor DNA analysis by multiplex digital PCR for disease monitoring in B-cell lymphomas: a proof-of-concept study

    Get PDF
    IntroductionAnalyzing liquid biopsies for tumor-specific aberrations can facilitate detection of measurable residual disease (MRD) during treatment and at follow-up. In this study, we assessed the clinical potential of using whole-genome sequencing (WGS) of lymphomas at diagnosis to identify patient-specific structural (SVs) and single nucleotide variants (SNVs) to enable longitudinal, multi-targeted droplet digital PCR analysis (ddPCR) of cell-free DNA (cfDNA).MethodsIn 9 patients with B-cell lymphoma (diffuse large B-cell lymphoma and follicular lymphoma), comprehensive genomic profiling at diagnosis was performed by 30X WGS of paired tumor and normal specimens. Patient-specific multiplex ddPCR (m-ddPCR) assays were designed for simultaneous detection of multiple SNVs, indels and/or SVs, with a detection sensitivity of 0.0025% for SV assays and 0.02% for SNVs/indel assays. M-ddPCR was applied to analyze cfDNA isolated from serially collected plasma at clinically critical timepoints during primary and/or relapse treatment and at follow-up.ResultsA total of 164 SNVs/indels were identified by WGS including 30 variants known to be functionally relevant in lymphoma pathogenesis. The most frequently mutated genes included KMT2D, PIM1, SOCS1 and BCL2. WGS analysis further identified recurrent SVs including t(14;18)(q32;q21) (IGH::BCL2), and t(6;14)(p25;q32) (IGH::IRF4). Plasma analysis at diagnosis showed positive circulating tumor DNA (ctDNA) levels in 88% of patients and the ctDNA burden correlated with baseline clinical parameters (LDH and sedimentation rate, p-value &lt;0.01). While clearance of ctDNA levels after primary treatment cycle 1 was observed in 3/6 patients, all patients analyzed at final evaluation of primary treatment showed negative ctDNA, hence correlating with PET-CT imaging. One patient with positive ctDNA at interim also displayed detectable ctDNA (average variant allele frequency (VAF) 6.9%) in the follow-up plasma sample collected 2 years after final evaluation of primary treatment and 25 weeks before clinical manifestation of relapse.ConclusionIn summary, we demonstrate that multi-targeted cfDNA analysis, using a combination of SNVs/indels and SVs candidates identified by WGS analysis, provides a sensitive tool for MRD monitoring and can detect lymphoma relapse earlier than clinical manifestation
    corecore