8 research outputs found

    MAIT cells are depleted early but retain functional cytokine expression in HIV infection

    No full text
    Mucosal-associated invariant T (MAIT) cells home to mucosal sites and exert antimicrobial activity against bacteria and other microorganisms. HIV infection leads to early depletion of gut T cells and translocation of bacterial products. There are reports that MAIT cells, defined by coexpression of Vα7.2 and CD161, are depleted during HIV infection and residual MAIT cells are functionally impaired. However, one study suggested that MAIT cells might remain after HIV infection but evade detection through CD161 downregulation. Thus, the impact of HIV infection on MAIT cells is unclear. We studied longitudinal blood samples from 31 HIV-infected subjects for MAIT cell numbers, phenotype and function using both standard Vα7.2/CD161 surface markers and an MR1 tetramer. We found that MAIT cells were depleted early during HIV infection, and although there was a concomitant rise in Vα7.2+CD161– cells, these were MR1 tetramer negative, indicating that these are unlikely to be altered MAIT cells. Antigen-mediated activation of residual MAIT cells showed that they remained functional out to 2 years following HIV infection. Although MAIT cells are depleted in HIV infection, residual and functionally active MAIT cells persist and may still be able to assist in controlling bacterial translocation during HIV infection

    Phenotypic and functional characterization of pharmacologically expanded Vγ9Vδ2 T cells in pigtail macaques

    No full text
    Summary: While gaining interest as treatment for cancer and infectious disease, the clinical efficacy of Vγ9Vδ2 T cell-based immunotherapeutics has to date been limited. An improved understanding of γδ T cell heterogeneity across lymphoid and non-lymphoid tissues, before and after pharmacological expansion, is required. Here, we describe the phenotype and tissue distribution of Vγ9Vδ2 T cells at steady state and following in vivo pharmacological expansion in pigtail macaques. Intravenous phosphoantigen administration with subcutaneous rhIL-2 drove robust expansion of Vγ9Vδ2 T cells in blood and pulmonary mucosa, while expansion was confined to the pulmonary mucosa following intratracheal antigen administration. Peripheral blood Vγ9Vδ2 T cell expansion was polyclonal, and associated with a significant loss of CCR6 expression due to IL-2-mediated receptor downregulation. Overall, we show the tissue distribution and phenotype of in vivo pharmacologically expanded Vγ9Vδ2 T cells can be altered based on the antigen administration route, with implications for tissue trafficking and the clinical efficacy of Vγ9Vδ2 T cell immunotherapeutics

    SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses

    No full text
    Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infection

    Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants

    No full text
    Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants
    corecore