153 research outputs found
Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.
<p>Abstract</p> <p>Background</p> <p>Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures.</p> <p>Methods</p> <p>Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures.</p> <p>Results</p> <p>The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes.</p> <p>Conclusions</p> <p>MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.</p
Embodiment and body awareness in meditators
[EN] Mindfulness practice consists of focusing attention in an intentional way on the experience of the present moment, including bodily sensations, thoughts or feelings, and the environment, with an attitude of acceptance and without judging. The body and, especially, body awareness are key elements in mindfulness. Embodiment or the feeling of being located within one's physical body is a related concept, and it is composed of the sense of ownership, location, and agency of the body. The rubber hand illusion (RHI) is an experimental paradigm that has been used to understand the mechanisms of embodiment, and evidence shows that body awareness modulates this illusion. To our knowledge, no studies have analyzed embodiment processes in meditators. The aim of this study is to use the RHI to analyze the mechanisms of embodiment and its relationship with body awareness and mindfulness in meditators and non-meditators. The sample was composed of long-term meditators (n = 15) and non-meditators (n = 15). Objective and self-report measures for embodiment with the RHI and self-report questionnaires of body awareness and mindfulness were administered. One-way ANOVA revealed significant differences between groups in sense of agency in the rubber hand. Meditators experienced less sense of agency in the rubber hand than non-meditators. Pearson's correlations showed that this lower sense of agency in the rubber hand was associated with higher body awareness and mindfulness. Results highlight the role of body awareness and mindfulness in embodiment mechanisms. This study has clinical implications, especially in psychopathological disorders that can be influenced by disturbances in these processes.The authors would like to acknowledge the "BODYTA" project (Spanish Ministry of Economy and Competitiveness, PSI2014-51928-R), "PROMOSAM" (Spanish Ministry of Economy and Competitiveness, PSI2014-56303-REDT), and "Excellence Research Program PROMETEO II" (Generalitat Valenciana, Conselleria de Educacion, Cultura y Deporte, PROMETEOII/2013/003). CIBERobn is an initiate of the ISCIII. PROMOSAM Excellence in Research Program (PSI2014-56303-REDT), MINECO, Spain.Cebolla, A.; Miragall, M.; Palomo, P.; Llorens Rodríguez, R.; Soler, J.; Demarzo, M.; García Campayo, J.... (2016). Embodiment and body awareness in meditators. Mindfulness. 7(6):1297-1305. https://doi.org/10.1007/s12671-016-0569-xS1297130576Aguado, J., Luciano, J. V., Cebolla, A., Serrano-Blanco, A., Soler, J., & García-Campayo, J. (2015). Bifactor analysis and construct validity of the five facet mindfulness questionnaire (FFMQ) in non-clinical Spanish samples. Frontiers in Psychology, 6, 404.Arzy, S., Thut, G., Mohr, C., Michel, C. M., & Blanke, O. (2006). Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. The Journal of Neuroscience, 26(31), 8074–8081.Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45.Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., et al. (2004). Mindfulness: a proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241.Bornemann, B., Herbert, B. M., Mehling, W. E., & Singer, T. (2015). Differential changes in self-reported aspects of interoceptive awareness through 3 months of contemplative training. Frontiers in Psychology, 5, 1504.Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391(6669), 756–756.Calsius, J., Courtois, I., Stiers, J., & De Bie, J. (2015). How do fibromyalgia patients with alexithymia experience their body? A qualitative approach. SAGE Open, 5, 1–10.Cascio, C. J., Foss-Feig, J. H., Burnette, C. P., Heacock, J. L., & Cosby, A. A. (2012). The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception. Autism, 16(4), 406–419.Cebolla, A., Garcia-Palacios, A., Soler, J., Guillen, V., Baños, R., & Botella, C. (2012). Psychometric properties of the Spanish validation of the Five Facets of Mindfulness Questionnaire (FFMQ). The European Journal of Psychiatry, 26(2), 118–126.Cebolla, A., Vara, M. D., Miragall, M., Palomo, P., & Baños, R. M. (2015). Embodied mindfulness: review of the body’s participation in the changes associated with the practice of mindfulness. Actas españolas de Psiquiatría, 43, 36–41.Cioffi, D. (1991). Sensory awareness versus sensory impression: affect and attention interact to produce somatic meaning. Cognition & Emotion, 5(4), 275–294.Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates Inc.Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.Dreeben, S. J., Mamberg, M. H., & Salmon, P. (2013). The MBSR body scan in clinical practice. Mindfulness, 4(4), 394–401.Dummer, T., Picot-Annand, A., Neal, T., & Moore, C. (2009). Movement and the rubber hand illusion. Perception, 38(2), 271.Dunn, B. D., Galton, H. C., Morgan, R., Evans, D., Oliver, C., Meyer, M., et al. (2010). Listening to your heart. How interoception shapes emotion experience and intuitive decision making. Psychological Science, 21(12), 1835–1844.Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305(5685), 875–877.Eshkevari, E., Rieger, E., Longo, M. R., Haggard, P., & Treasure, J. (2012). Increased plasticity of the bodily self in eating disorders. Psychological Medicine, 42(04), 819–828.Farb, N., Daubenmier, J. J., Price, C. J., Gard, T., Kerr, C., Dunn, B., et al. (2015). Interoception, contemplative practice, and health. Frontiers in Psychology, 6, 763.Fox, K. C., Zakarauskas, P., Dixon, M., Ellamil, M., Thompson, E., Christoff, K., et al. (2012). Meditation experience predicts introspective accuracy. PLoS ONE, 7(9), e45370.Grossman, P., Tiefenthaler-Gilmer, U., Raysz, A., & Kesper, U. (2007). Mindfulness training as an intervention for fibromyalgia: evidence of postintervention and 3-year follow-up benefits in well-being. Psychotherapy and Psychosomatics, 76(4), 226–233.Holmes, N. P., Snijders, H. J., & Spence, C. (2006). Reaching with alien limbs: visual exposure to prosthetic hands in a mirror biases proprioception without accompanying illusions of ownership. Perception & Psychophysics, 68(4), 685–701.Hölzel, B. K., Ott, U., Gard, T., Hempel, H., Weygandt, M., Morgen, K., et al. (2008). Investigation of mindfulness meditation practitioners with voxel-based morphometry. Social Cognitive and Affective Neuroscience, 3(1), 55–61.Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559.Kalckert, A., & Ehrsson, H. H. (2012). Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Frontiers in Human Neuroscience, 6, 40.Karnath, H. O., & Baier, B. (2010). Right insula for our sense of limb ownership and self-awareness of actions. Brain Structure and Function, 214(5-6), 411–417.Keizer, A., Smeets, M. A., Postma, A., van Elburg, A., & Dijkerman, H. C. (2014). Does the experience of ownership over a rubber hand change body size perception in anorexia nervosa patients? Neuropsychologia, 62, 26–37.Kerr, C. E., Sacchet, M. D., Lazar, S. W., Moore, C. I., & Jones, S. R. (2013). Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Frontiers in Human Neuroscience, 7, 12.Lakhan, S. E., & Schofield, K. L. (2013). Mindfulness-based therapies in the treatment of somatization disorders: a systematic review and meta-analysis. PLoS ONE, 8(8), e71834.Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.Longo, M. R., Schüür, F., Kammers, M. P., Tsakiris, M., & Haggard, P. (2008). What is embodiment? A psychometric approach. Cognition, 107(3), 978–998.McManus, F., Surawy, C., Muse, K., Vazquez-Montes, M., & Williams, J. M. G. (2012). A randomized clinical trial of mindfulness-based cognitive therapy versus unrestricted services for health anxiety (hypochondriasis). Journal of Consulting and Clinical Psychology, 80(5), 817–828.Mehling, W. E., Gopisetty, V., Daubenmier, J., Price, C. J., Hecht, F. M., & Stewart, A. (2009). Body awareness: construct and self-report measures. PLoS ONE, 4(5), e5614.Mehling, W. E., Price, C., Daubenmier, J. J., Acree, M., Bartmess, E., & Stewart, A. (2012). The multidimensional assessment of interoceptive awareness (MAIA). PLoS ONE, 7(11), e48230.Mirams, L., Poliakoff, E., Brown, R. J., & Lloyd, D. M. (2013). Brief body-scan meditation practice improves somatosensory perceptual decision making. Consciousness and Cognition, 22(1), 348–359.Moseley, G. L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., et al. (2008). Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proceedings of the National Academy of Sciences, 105(35), 13169–13173.Mussap, A. J., & Salton, N. (2006). A ‘rubber-hand’ illusion reveals a relationship between perceptual body image and unhealthy body change. Journal of Health Psychology, 11(4), 627–639.Naranjo, J. R., & Schmidt, S. (2012). Is it me or not me? Modulation of perceptual-motor awareness and visuomotor performance by mindfulness meditation. BMC Neuroscience, 13(1), 88.Parkin, L., Morgan, R., Rosselli, A., Howard, M., Sheppard, A., Evans, D., et al. (2014). Exploring the relationship between mindfulness and cardiac perception. Mindfulness, 5(3), 298–313.Pollatos, O., Kurz, A. L., Albrecht, J., Schreder, T., Kleemann, A. M., Schöpf, V., et al. (2008). Reduced perception of bodily signals in anorexia nervosa. Eating Behaviors, 9(4), 381–388.Quezada-Berumen, L., González-Ramírez, M. T., Cebolla, A., Soler, J., & García-Campayo, J. (2014). Conciencia corporal y mindfulness: Validación de la versión española de la escala de conexión corporal (SBC). Actas Españolas de Psiquiatría, 42(2), 57–67.Rohde, M., Di Luca, M., & Ernst, M. O. (2011). The rubber hand illusion: feeling of ownership and proprioceptive drift do not go hand in hand. PLoS One, 6(6), e21659.Schauder, K. B., Mash, L. E., Bryant, L. K., & Cascio, C. J. (2015). Interoceptive ability and body awareness in autism spectrum disorder. Journal of Experimental Child Psychology, 131, 193–200.Sze, J. A., Gyurak, A., Yuan, J. W., & Levenson, R. W. (2010). Coherence between emotional experience and physiology: does body awareness training have an impact? Emotion, 10(6), 803–814.Teper, R., & Inzlicht, M. (2013). Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive and Affective Neuroscience, 8(1), 85–92.Thakkar, K. N., Nichols, H. S., McIntosh, L. G., & Park, S. (2011). Disturbances in body ownership in schizophrenia: evidence from the rubber hand illusion and case study of a spontaneous out-of-body experience. PLoS One, 6(10), e27089.Tran, U. S., Glück, T. M., & Nader, I. W. (2013). Investigating the Five Facet Mindfulness Questionnaire (FFMQ): construction of a short form and evidence of a two‐factor higher order structure of mindfulness. Journal of Clinical Psychology, 69(9), 951–965.Tsakiris, M., & Haggard, P. (2005). The rubber hand illusion revisited: visuotactile integration and self-attribution. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 80.Tsakiris, M., Tajadura-Jiménez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: interoceptive sensitivity predicts malleability of body-representations. Proceedings of the Royal Society of London B: Biological Sciences, 278(1717), 2470–2476.Van Ravesteijn, H., Lucassen, P. L. B. J., Bor, H., Van Weel, C., & Speckens, A. (2013). Mindfulness-based cognitive therapy for patients with medically unexplained symptoms: a randomized controlled trial. Psychotherapy and Psychosomatics, 82(5), 299–310
Recommended from our members
When passive feels active - delusion-proneness alters self-recognition in the moving rubber hand illusion
Psychotic patients have problems with bodily self-recognition such as the experience of self-produced actions (sense of agency) and the perception of the body as their own (sense of ownership). While it has been shown that such impairments in psychotic patients can be explained by hypersalient processing of external sensory input it has also been suggested that they lack normal efference copy in voluntary action. However, it is not known how problems with motor predictions like efference copy contribute to impaired sense of agency and ownership in psychosis or psychosis-related states. We used a rubber hand illusion based on finger movements and measured sense of agency and ownership to compute a bodily self-recognition score in delusion-proneness (indexed by Peters’ Delusion Inventory - PDI). A group of healthy subjects (n=71) experienced active movements (involving motor predictions) or passive movements (lacking motor predictions). We observed a highly significant correlation between delusion-proneness and self-recognition in the passive conditions, while no such effect was observed in the active conditions. This was seen for both ownership and agency scores. The result suggests that delusion-proneness is associated with hypersalient external input in passive conditions, resulting in an abnormal experience of the illusion. We hypothesize that this effect is not present in the active condition because deficient motor predictions counteract hypersalience in psychosis proneness
Sex differences in the Simon task help to interpret sex differences in selective attention.
In the last decade, a number of studies have reported sex differences in selective attention, but a unified explanation for these effects is still missing. This study aims to better understand these differences and put them in an evolutionary psychological context. 418 adult participants performed a computer-based Simon task, in which they responded to the direction of a left or right pointing arrow appearing left or right from a fixation point. Women were more strongly influenced by task-irrelevant spatial information than men (i.e., the Simon effect was larger in women, Cohen's d = 0.39). Further, the analysis of sex differences in behavioral adjustment to errors revealed that women slow down more than men following mistakes (d = 0.53). Based on the combined results of previous studies and the current data, it is proposed that sex differences in selective attention are caused by underlying sex differences in core abilities, such as spatial or verbal cognition
Spatiotemporal processing of somatosensory stimuli in schizotypy
Unusual interaction behaviors and perceptual aberrations, like those occurring in schizotypy and schizophrenia, may in part originate from impaired remapping of environmental stimuli in the body space. Such remapping is contributed by the integration of tactile and proprioceptive information about current body posture with other exteroceptive spatial information. Surprisingly, no study has investigated whether alterations in such remapping occur in psychosis-prone individuals. Four hundred eleven students were screened with respect to schizotypal traits using the Schizotypal Personality Questionnaire. A subgroup of them, classified as low, moderate, and high schizotypes were to perform a temporal order judgment task of tactile stimuli delivered on their hands, with both uncrossed and crossed arms. Results revealed marked differences in touch remapping in the high schizotypes as compared to low and moderate schizotypes. For the first time here we reveal that the remapping of environmental stimuli in the body space, an essential function to demarcate the boundaries between self and external world, is altered in schizotypy. Results are discussed in relation to recent models of 'self-disorders' as due to perceptual incoherence
Glutathione and glutamate in schizophrenia: a 7T MRS study
In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate and/or glutamine in the cerebral cortex, consistent with a postinflammatory response, and that this reduction would be most marked in patients with residual schizophrenia an early stage with positive psychotic symptoms has progressed to a late stage characterised by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton Magnetic Resonance Spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal Components Analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excito-toxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness
Elderly with Autism: Executive Functions and Memory
Cognitive autism research is mainly focusing on children and young adults even though we know that autism is a life-long disorder and that healthy aging already has a strong impact on cognitive functioning. We compared the neuropsychological profile of 23 individuals with autism and 23 healthy controls (age range 51–83 years). Deficits were observed in attention, working memory, and fluency. Aging had a smaller impact on fluency in the high functioning autism (HFA) group than in the control group, while aging had a more profound effect on visual memory performance in the HFA group. Hence, we provide novel evidence that elderly with HFA have subtle neuropsychological deficits and that the developmental trajectories differ between elderly with and without HFA in particular cognitive domains
Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study
Background: Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings: In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophreni
- …