32 research outputs found

    Deconstructing Disability: A Philosophy for Inclusion

    Full text link
    This article offers derrida's deconstruction as a philosophy and practical strategy that challenges the assumed, factual nature of "disability" as a construct explaining human differences. The appeal of deconstruction lies in the contradictory philosophy currently articulated by the inclusion movement, a philosophy that simultaneously supports the disability construct as objective reality while calling for students "with disabilities" to be placed in educational settings designed for students considered nondisabled. This article proposes deconstruction as one coherent philosophical orientation for inclusion, an approach that critiques the political and moral hierarchy of ability and disability. A deconstructionist critique of disability is explained and demonstrated. Practical suggestions for the utilization of deconstruction by special educators are outlined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68721/2/10.1177_074193259701800605.pd

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Absolute configuration assignment of a chiral molecule in the gas phase using foil-induced Coulomb explosion imaging

    No full text
    Chiral molecules exist in two configurations that are nonsuperposable mirror images of one another. The underlying molecular structure is referred to as the absolute configuration. In chiral environments, the handedness of molecules influences their chemical characteristics dramatically, and therefore the determination of absolute configurations is of fundamental interest in organic chemistry and biology. Commonly applied techniques to assign absolute configuration are anomalous single-crystal x-ray diffraction and vibrational circular dichroism. However, these techniques become increasingly more challenging when applied to molecules that are made out of light atoms exclusively. Furthermore, there is no established method to determine the absolute handedness of gas-phase molecules that are not optically active. In this work, we apply the foil-induced Coulomb explosion imaging technique to determine directly the absolute configuration of the chiral molecule trans-2,3-dideuterooxirane (C2OD2H2) in the gas phase. The experiment leads to the definitive assignment of the (R,R) configuration to an enantio-selected dideuterooxirane sample with a statistical confidence of 5σ. As the handedness of trans-2,3-dideuterooxirane is unambiguously linked by chemical synthesis to the stereochemical key reference glyceraldehyde, our results provide an independent verification of the absolute configuration of the stereochemical reference standard

    Imaging the Absolute Configuration of a Chiral Epoxide in the Gas Phase

    No full text
    In chemistry and biology, chirality, or handedness, refers to molecules that exist in two spatial configurations that are incongruent mirror images of one another. Almost all biologically active molecules are chiral, and the correct determination of their absolute configuration is essential for the understanding and the development of processes involving chiral molecules. Anomalous x-ray diffraction and vibrational optical activity measurements are broadly used to determine absolute configurations of solid or liquid samples. Determining absolute configurations of chiral molecules in the gas phase is still a formidable challenge. Here we demonstrate the determination of the absolute configuration of isotopically labeled (R,R)-2,3-dideuterooxirane by foil-induced Coulomb explosion imaging of individual molecules. Our technique provides unambiguous and direct access to the absolute configuration of small gas-phase species, including ions and molecular fragments

    Coulomb Explosion Imaged Cryptochiral (R,R)-2,3-Dideuterooxirane: Unambiguous Access to the Absolute Configuration of (+)-Glyceraldehyde

    No full text
    The absolute configuration of (R,R)-2,3-dideuterooxirane, which has been independently determined using Coulomb explosion imaging, has been unambiguously chemically correlated with the stereochemical key reference (+)-glyceraldehyde. This puts the absolute configuration of D(+)-glyceraldehyde on firm experimental grounds
    corecore