10 research outputs found

    K2-136: A Hyades Binary Star with a Neptune-sized Planet

    Get PDF
    We report the discovery of a Neptune-size planet (Rp = 3.0 Re) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V=11.2, J=9.1) and so may be a good target for precise radial velocity measurements. K2-136A c is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set constraints on the formation and evolution of planetary systems.Comment: 13 pages, 8 figures, 2 tables. Accepted to AAS Journal

    K2-136: A Binary System in the Hyades Cluster Hosting a Neptune-sized Planet

    Get PDF
    We report the discovery of a Neptune-size planet (R_p = 3.0 R⊕) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 au. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hrs. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. K2-136A c is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625–750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set constraints on the formation and evolution of planetary systems

    Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. IV. Updated Properties for 86 Cool Dwarfs Observed during Campaigns 1–17

    Get PDF
    We present revised stellar properties for 172 K2 target stars that were identified as possible hosts of transiting planets during Campaigns 1–17. Using medium-resolution near-infrared spectra acquired with the NASA Infrared Telescope Facility/SpeX and Palomar/TripleSpec, we found that 86 of our targets were bona fide cool dwarfs, 74 were hotter dwarfs, and 12 were giants. Combining our spectroscopic metallicities with Gaia parallaxes and archival photometry, we derived photometric stellar parameters and compared them to our spectroscopic estimates. Although our spectroscopic and photometric radius and temperature estimates are consistent, our photometric mass estimates are systematically ΔM sstarf = 0.11 M ⊙ (34%) higher than our spectroscopic mass estimates for the least massive stars (M sstarf,phot < 0.4 M ⊙). Adopting the photometric parameters and comparing our results to parameters reported in the Ecliptic Plane Input Catalog, our revised stellar radii are ΔR sstarf = 0.15 R ⊙ (40%) larger, and our revised stellar effective temperatures are roughly ΔT eff = 65 K cooler. Correctly determining the properties of K2 target stars is essential for characterizing any associated planet candidates, estimating the planet search sensitivity, and calculating planet occurrence rates. Even though Gaia parallaxes have increased the power of photometric surveys, spectroscopic characterization remains essential for determining stellar metallicities and investigating correlations between stellar metallicity and planetary properties

    K2-288Bb: A Small Temperate Planet in a Low-mass Binary System Discovered by Citizen Scientists

    Get PDF
    Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Observations from the Kepler and K2 missions have provided the astronomical community with unprecedented amounts of data to search for transiting exoplanets and other astrophysical phenomena. Here, we present K2-288, a low-mass binary system (M2.0 ± 1.0; M3.0 ± 1.0) hosting a small (R p = 1.9 R ⊕), temperate (T eq = 226 K) planet observed in K2 Campaign 4. The candidate was first identified by citizen scientists using Exoplanet Explorers hosted on the Zooniverse platform. Follow-up observations and detailed analyses validate the planet and indicate that it likely orbits the secondary star on a 31.39-day period. This orbit places K2-288Bb in or near the habitable zone of its low-mass host star. K2-288Bb resides in a system with a unique architecture, as it orbits at >0.1 au from one component in a moderate separation binary (a proj ~ 55 au), and further follow-up may provide insight into its formation and evolution. Additionally, its estimated size straddles the observed gap in the planet radius distribution. Planets of this size occur less frequently and may be in a transient phase of radius evolution. K2-288 is the third transiting planet system identified by the Exoplanet Explorers program and its discovery exemplifies the value of citizen science in the era of Kepler, K2, and the Transiting Exoplanet Survey Satellite

    K2-136: A Binary System in the Hyades Cluster Hosting a Neptune-sized Planet

    Get PDF
    We report the discovery of a Neptune-size planet (R_p = 3.0 R⊕) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 au. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hrs. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. K2-136A c is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625–750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set constraints on the formation and evolution of planetary systems
    corecore