249 research outputs found

    Fitting Correlated Hadron Mass Spectrum Data

    Get PDF
    We discuss fitting hadronic Green functions versus time tt to extract mass values in quenched lattice QCD. These data are themselves strongly correlated in tt. With only a limited number of data samples, the method of minimising correlated χ2\chi^2 is unreliable. We explore several methods of modelling the correlations among the data set by a few parameters which then give a stable and sensible fit even if the data sample is small. In particular these models give a reliable estimate of the goodness of fit.Comment: 14 pages, Latex text, followed by 3 postscript figures in self-unpacking file. Also available at ftp://suna.amtp.liv.ac.uk/pub/cmi/corfit

    Total Thickness of the Amburgy Coal in Eastern Kentucky

    Get PDF
    This map showing the regional characteristics of the Amburgy coal bed was prepared as part of the U.S. Geological Survey\u27s National Coal Assessment program, which compiles regional maps and databases that provide a comprehensive assessment of the most important coal beds in the nation. The Amburgy coal zone is composed of a number of distinct coal beds that merge in some areas to form mineable coal bodies. For the purpose of this assessment, the zone has been divided into two beds; the Lower Amburgy (A) and Upper Ambury (B). The lower bed is of greatest economic significance and is the subject of this publication. The map shows the total coal thickness, minus partings, of the lower or main Amburgy bed for the eastern Kentucky region. It is not a traditional isopach map, because the mineable bed is not composed of the same benches in all areas (Figs. 1-3). Discontinuities, delineated by facies boundaries on the map, indicate abrupt changes in thickness caused by splitting. Discontinuities were classified on the basis of the nature, as well as the confidence in location, of the discontinuity (Fig. 1). The Lower Amburgy bed is the main bed north of the Pine Mountain Overthrust Fault, where it is also known as the Williamson, Gun Creek, and Cannel City coal. South of the Pine Mountain Overthrust Fault, the lower bed has complex bench architecture, and is known locally as the Creech coal

    Perceptual Inference in Chronic Pain:An Investigation into the Economy of Action Hypothesis

    Get PDF
    Objective: The experience of chronic pain critically alters one's ability to interact with their environment. One fundamental issue that has received little attention, however, is whether chronic pain disrupts how one perceives their environment in the first place. The Economy of Action hypothesis purports that the environment is spatially scaled according to the ability of the observer. Under this hypothesis it has been proposed that the perception of the world is different between those with and without chronic pain. Such a possibility has profound implications for the investigation and treatment of pain. The present investigation tested the application of this hypothesis to a heterogenous chronic pain population. Methods: Individuals with chronic pain (36; 27F) and matched pain-free controls were recruited. Each participant was required to judge the distance to a series of target cones, to which they were to subsequently walk. In addition, at each distance, participants used Numerical Rating Scales to indicate their perceived effort and perceived pain associated with the distance presented. Results: Our findings do not support the Economy of Action hypothesis: there were no significant differences in distance estimates between the chronic pain and pain-free groups (F 1,60 =0.927; P=0.340). In addition, we found no predictive relationship in the chronic pain group between anticipated pain and estimated distance (F 1,154 =0.122, P=0.727), nor anticipated effort (1.171, P=0.281) and estimated distance (F 1,154 =1.171, P=0.281). Discussion: The application of the Economy of Action hypothesis and the notion of spatial perceptual scaling as a means to assess and treat the experience of chronic pain are not supported by the results of this study

    Algorithm XXX: SHEPPACK: ModiïŹed Shepard Algorithm for Interpolation of Scattered Multivariate Data

    Get PDF
    Scattered data interpolation problems arise in many applications. Shepard’s method for constructing a global interpolant by blending local interpolants using local-support weight functions usually creates reasonable approximations. SHEPPACK is a Fortran 95 package containing ïŹve versions of the modified Shepard algorithm: quadratic (Fortran 95 translations of Algorithms 660, 661, and 798), cubic (Fortran 95 translation of Algorithm 791), and linear variations of the original Shepard algorithm. An option to the linear Shepard code is a statistically robust ïŹt, intended to be used when the data is known to contain outliers. SHEPPACK also includes a hybrid robust piecewise linear estimation algorithm RIPPLE (residual initiated polynomial-time piecewise linear estimation) intended for data from piecewise linear functions in arbitrary dimension m. The main goal of SHEPPACK is to provide users with a single consistent package containing most existing polynomial variations of Shepard’s algorithm. The algorithms target data of different dimensions. The linear Shepard algorithm, robust linear Shepard algorithm, and RIPPLE are the only algorithms in the package that are applicable to arbitrary dimensional data

    Symptom Domain Groups of the Patient-Reported Outcomes Measurement Information System Tools Independently Predict Hospitalizations and Re-hospitalizations in Cirrhosis

    Get PDF
    Background Patient-Reported Outcomes Measurement Information System (PROMIS) tools can identify health-related quality of life (HRQOL) domains that could differentially affect disease progression. Cirrhotics are highly prone to hospitalizations and re-hospitalizations, but the current clinical prognostic models may be insufficient, and thus studying the contribution of individual HRQOL domains could improve prognostication. Aim Analyze the impact of individual HRQOL PROMIS domains in predicting time to all non-elective hospitalizations and re-hospitalizations in cirrhosis. Methods Outpatient cirrhotics were administered PROMIS computerized tools. The first non-elective hospitalization and subsequent re-hospitalizations after enrollment were recorded. Individual PROMIS domains significantly contributing toward these outcomes were generated using principal component analysis. Factor analysis revealed three major PROMIS domain groups: daily function (fatigue, physical function, social roles/activities and sleep issues), mood (anxiety, anger, and depression), and pain (pain behavior/impact) accounted for 77% of the variability. Cox proportional hazards regression modeling was used for these groups to evaluate time to first hospitalization and re-hospitalization. Results A total of 286 patients [57 years, MELD 13, 67% men, 40% hepatic encephalopathy (HE)] were enrolled. Patients were followed at 6-month (mth) intervals for a median of 38 mths (IQR 22–47), during which 31% were hospitalized [median IQR mths 12.5 (3–27)] and 12% were re-hospitalized [10.5 mths (3–28)]. Time to first hospitalization was predicted by HE, HR 1.5 (CI 1.01–2.5, p = 0.04) and daily function PROMIS group HR 1.4 (CI 1.1–1.8, p = 0.01), independently. In contrast, the pain PROMIS group were predictive of the time to re-hospitalization HR 1.6 (CI 1.1–2.3, p = 0.03) as was HE, HR 2.1 (CI 1.1–4.3, p = 0.03). Conclusions Daily function and pain HRQOL domain groups using PROMIS tools independently predict hospitalizations and re-hospitalizations in cirrhotic patients

    The continuum limit of the static-light meson spectrum

    Full text link
    We investigate the continuum limit of the low lying static-light meson spectrum using Wilson twisted mass lattice QCD with N_f = 2 dynamical quark flavours. We consider three values of the lattice spacing a ~ 0.051 fm, 0.064 fm, 0.080 fm and various values of the pion mass in the range 280 MeV < m_PS < 640 MeV. We present results in the continuum limit for light cloud angular momentum j = 1/2, 3/2, 5/2 and for parity P = +, -. We extrapolate our results to physical quark masses, make predictions regarding the spectrum of B and B_s mesons and compare with available experimental results.Comment: 18 pages, 3 figure

    Precision Charmonium Spectroscopy From Lattice QCD

    Get PDF
    We present results for Charmonium spectroscopy using Non-Relativistic QCD (NRQCD). For the NRQCD action the leading order spin-dependent and next to leading order spin-independent interactions have been included with tadpole-improved coefficients. We use multi-exponential fits to multiple correlation functions to extract ground and excited SS states. Splittings between the lowest SS, PP and DD states are given and we have accurate values for the SS state hyperfine splitting and the χc\chi_c fine structure. Agreement with experiment is good - the remaining systematic errors are discussed.Comment: 23 pages uuencoded latex file. Contains figures in late

    Ab Initio Calculation of Relativistic Corrections to the Static Interquark potential I: SU(2) Gauge Theory

    Get PDF
    We test the capability of state-of-the-art lattice techniques for a precise determination of relativistic corrections to the static interquark potential, by use of SU(2) gauge theory. Emphasis is put on the short range structure of the spin dependent potentials, with lattice resolution a ranging from a approx 0.04 fm (at beta=2.74) down to a approx 0.02 fm (at beta=2.96) on volumes of 32^4 and 48^4 lattice sites. We find a new short range Coulomb-like contribution to the spin-orbit potential V_1'.Comment: 37 pages REVTeX with 20 encapsuled ps figure

    S and P-wave heavy-light mesons in lattice NRQCD

    Full text link
    The mass spectrum of S and P-wave mesons containing a single heavy quark is computed in the quenched approximation, using NRQCD up to third order in the inverse heavy quark mass expansion. Previous results found third order contributions which are as large in magnitude as the total second order contribution for the charmed S-wave spin splitting. The present work considers variations such as anisotropic lattices, Landau link tadpole improvement, and a highly-improved light quark action, and finds that the second order correction to the charmed S-wave spin splitting is about 20% of the leading order contribution, while the third order correction is about 20%(10%) for D^*-D(D_s^*-D_s). Nonleading corrections are very small for the bottom meson spectrum, and are statistically insignificant for the P-wave charmed masses. The relative orderings among P-wave charmed and bottom mesons, and the sizes of the mass splittings, are discussed in light of experimental data and existing calculations.Comment: 21 pages including 6 figures, changed method of fitting correlators, this version to be published in Phys Rev
    • 

    corecore