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Abstract

We present results for Charmonium spectroscopy using Non-Relativistic
QCD (NRQCD). For the NRQCD action the leading order spin-dependent
and next to leading order spin-independent interactions have been in-
cluded with tadpole-improved coefficients. We use multi-exponential
fits to multiple correlation functions to extract ground and excited S
states. Splittings between the lowest S, P and D states are given and
we have accurate values for the 5 state hyperfine splitting and the .
fine structure. Agreement with experiment is good - the remaining
systematic errors are discussed.

PACS numbers: 12.38.Gc, 14.40.Gx, 14.65.Dw, 12.39.Hg

1 Introduction

The study of heavy-heavy mesons is important for Lattice Gauge Theory not
only because of the availability of experimental data for comparison but also
because such systems allow a quantitative study of systematic errors which
arise in lattice simulations at present. To study heavy-heavy mesons we
use Non-Relativistic QCD (NRQCD)[1, 2] and previously we have reported
a very successful study of the Bottomonium system[3]. This allowed the
extraction of two fundamental parameters in QCD[4], the b-quark mass [3]
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and the strong coupling constant a; [6]. Here we report on a similar study
of the Charmonium spectrum.

The starting point of NRQCD is to expand the original QCD lagrangian
in powers of v?, the typical quark velocity in a bound state. For the J/W¥
system v? ~ 0.3. Thus we systematically include relativistic errors order by
order in v? away from a Non-Relativistic limit. Our action is the same one as
used in [3] where relativistic corrections O(Mwv?) have been included. This
means that systematic errors from relativistic corrections will be O(M_v°%) (=
~ 30 —40 MeV) for the J/WU system i.e. 10% in spin-independent splittings
and 30% in spin-dependent splittings. This is considerably less accurate than
for the T case[3] because v? is about a factor of 3 larger here. Other sources of
systematic error include discretisation errors and errors from the absence of
virtual quark loops because we use quenched configurations generated with
the standard plaquette action. Finite volume errors should be negligible
because of the relatively small size of the J/W system.

Shown in Figures (1) and (2) is the spectrum for Charmonium using Lat-
tice NRQCD. The spectrum was calculated using an ensemble of 273 gauge
field configurations generated with the standard Wilson action at g = 5.7[7].
To set the scale we fix our simulation result for the spin-averaged 1P-15
splitting to its experimental value of 458 MeV. This gives a™! = 1.23(4)
GeV, where the uncertainty is purely statistical. Since we are working in the
quenched approximation this value can be and is different both from that ob-
tained at the same value of 3 using light hadron spectroscopy[8] or using Up-
silon spectroscopy[9]. We expect a value fixed from heavyonium to be more
accurate than that from light hadron spectroscopy because spin-independent
splittings in the heavy quark sector are independent of quark mass to a good
approximation and systematic errors are under better control[l1].

To fix the bare quark mass in the action, M?, we plot a dispersion relation
correct up to O(v?) for the n.. M? is then tuned until the simulation value
for the kinetic mass is equal to the experimental value of the mass of the 7.
(2.98 GeV). We find that using a M?=0.8 gives M(n.)=3.0(1) GeV with a~*
= 1.23(4) GeV.

In Figure (1) the whole Charmonium spectrum is shown and in Figure (2)
the spin-dependent splittings are shown in more detail. In Figure (2) it can
be seen that although the general pattern of splittings for the S and P states
is reproduced well, systematic errors are visible above the statistical errors. It
should then be possible in the future to observe systematic improvements to
the current calculation, when higher order relativistic corrections are included
and further discretisation and quenching errors are removed.

We give details in section 2 of our evolution equation and the quark Greens
function used to make up meson correlation functions. Section 3 describes
the results from the simulation using multi-exponential fits. We illustrate
the need for multiple smearing functions to obtain smaller statistical errors.
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Figure 1: NRQCD simulation results for the spectrum of the J/W system
using an inverse lattice spacing of 1.23 GeV, fixed from the spin-averaged
1P-1S splitting. The 1Sy mass is fixed at 3.0 GeV, from a fit to the kinetic
mass. Experimental values are indicated by dashed lines. Error bars are
shown where visible, and only indicate statistical uncertainties.

Section 4 compares simulation results to experiment and section 5 contains
our conclusion.

2 Evolution Equation and Quark propaga-
tors

One of the advantages of the formulation of NRQCD is that it involves a sim-
ple difference equation in the temporal direction. This allows the evolution
of the quark Green function as an initial value problem which can be solved
with one sweep through the lattice. We define our quark Green function to
be initially

Ho\" Ho\"
Gy = (1—%) Ul (1—2) 820 (1)

and then continue to evolve using

Gy = (1—Q—%)RUI<1—C;—%)R(1—a5H)Gt t>1.  (2)
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Figure 2: Simulation results for the spin structure of the J/W family, using
an inverse lattice spacing of 1.23 GeV. The energies of the spin-averaged S
and P states have been set to zero. Error bars for points are statistical.

On the lattice, the kinetic energy operator is

A2)
Ho =~ 3o (3)

and the correction terms are

(A®)2 ig

oH = _CIW—I—CQS(MCO)Q (AE—EA)
g g
_CSW‘T‘(AXE_EXA)_&IZMCOU‘B
a2A(4) a(A(2))2 A
T T CTen(a0) )

The first two terms in 6 H are spin-independent relativistic corrections and
the next two are spin-dependent correction terms which contribute to the P
and S spin splittings respectively. The last two terms come from finite lattice
spacing corrections to the lattice Laplacian and the lattice time derivative.
A is the symmetric lattice derivative, A®) is the lattice form of the Laplacian
and A™ is a lattice version of the continuum operator 3 D¥. We used the
standard traceless cloverleat operators for the chromo-electric and magnetic
fields, E and B. The parameter n is introduced to remove instabilities in
the heavy quark propagator caused by the highest momentum modes of the
theory[l]. For our simulations at 8 = 5.7 and with a bare mass for the ¢
quark in lattice units of 0.8, we set n = 4.
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The coupling constants ¢; appearing in equation (4) can be calculated
by matching NRQCD to full QCD [2, 10]. At tree level all the coeffi-
cients are one. The largest radiative corrections are believed to be tadpole
contributions[11]. We take care of these by using the method suggested in
[11] where all the U’s are redefined by

(5)

with ug the fourth root of the plaquette (at 3=5.7 we use uy = 0.861).
Since the cloverleaf expression involves the evaluation of a plaquette this
renormalization will have the effect of redefining E and B via

E B
Ug Ug

which will strongly affect spin-dependent splittings. With the dominant tad-
pole contributions thus removed, we use the tree level values for the ¢;’s. The
only remaining free parameters are the bare quark mass M° and the bare
coupling constant g which appear in the original QCD Lagrangian. All the
details of the quark evolution up to this point are identical to those in [3].
In the following some of the technical details differ slightly.

Given the quark propagators in equation (2) it is relatively straightfor-
ward to combine them appropriately to form meson propagators with specific
quantum numbers. Using the notation of [3] we take ;/)J[ to create a heavy

quark and XJ[ to create a heavy anti-quark. Then the following interpolating
operator creates a meson centred on the point 7 :

Sl () T — 22) (22). )

Local meson operators are tabulated in [3]. Here we generalise the operators
to include ‘smearing functions’. For S states the meson operator I' becomes
QO ¢(@7 — 3) where  is a 2 X 2 matrix in spin space giving the quantum
numbers of the meson and ¢ is a simple approximation to the wavefunction.
For P states, ¢ also becomes a p wavefunction, which can be thought of as
the derivative of a spherically symmetric function [3]. In general I' is a sum
of spin matrices multiplying different smearing functions, generalising the
operators in [3]. For the wavefunctions ¢ we use here wavefunctions from a
1/r potential with their spread adjusted to match the size of the appropriate
meson.
For meson propagators at zero momentum we then have

. T T
Gmeson(p = Ovt) = Z Tr [GI(?J?) F( *) (yl - y2) Gt(yl) (8)

71,92



with

Cali) = 3 Gl = BT (@) g

I'*¢(z) and ['**(z) refers to the meson operator I'(z) = Q¢(z) with the smear-
ing function ¢(x) at the source or sink respectively and enumerated by the
integer ng. or ng. n = 1 corresponds to the ground state meson, n = 2 to
the first radially excited state. G, is obtained using equations (1) and (2)
with 6z9 — F(SC)(:Z"). The trace is over color and spin. The convolutions are
evaluated using Fast Fourier Transforms.

We also study finite momentum propagators for the 1Sy meson, given by:

Gmeson(ﬁvt) = ZTT [Gl(gjl)gét(?jl)] e—iﬁ'lﬁ (10)
7

Using the notation 2! L;, we have looked at meson propagators for the
following states: 'Sg, ®Sy, 1P, 2Py, 2Py, 2Py for both the E and T repre-
sentation and the 1D, in the T representation. For the S states, smearing
functions both for the ground and first radially excited state were used as
well as a local 6 function (n = loc). From this all possible combinations
of smearing at the source and sink were formed making a 3 x 3 matrix of
correlation functions. For the P and D states only the ground state smearing
function was used at the source. We calculated the dispersion relation for
the 1.5y by looking at the meson propagator for small momentum components
using (nse, nsk) = (loc, loc) and (1,loc). To maximize our statistics we use all
color and spin indices at the source when calculating our meson propagators.
For the Sy, 'P, ®Py, *P, and ' D, we average over polarization directions
making a total of 30 S, P and D meson propagators to analyze.

3 Simulation results

In the simulation we used 273 quenched gluon field configurations on a 12*x24
lattice at = 5.7 generously supplied by the UKQCD collaboration[7]. They
were fixed to Coulomb gauge using a Fourier accelerated steepest descents
algorithm [12] with a cutoff on [0 - A]* of 107%. Due to the relatively small
size of the J/W it is possible to use more than one starting site on a spatial
slice. We also use more than one starting point in time to increase statistics.
In this case we used 8 different spatial origins and 2 different starting times
at timeslice 1 and 12. If we bin the spatial origins together we find signif-
icant correlation, whereas binning together two propagators with an initial
timeslice of 1 and 12 but with the same spatial origin gives little or no corre-
lation at all. For most of our fits we bin together all the correlation functions
from a given configuration, except when doing multiple-exponential multiple-
correlation fits for the 'Sy and 25 case. Here we only bin on spatial origin



and having the increased sample size from the time direction significantly
improves the fit. We also checked, however, that fitting with all data un-
binned produces a worse y? than when all data is binned, another indicator
of spatial correlations.

In NRQCD, as in QCD, there are two free parameters, the bare coupling
constant ¢ and the bare quark mass M?. We fix g implicitly when we set
the scale a™'. To fix M? we tune so that the simulation result for the kinetic
mass of the 'Sy agrees with the experimental value of the mass of the 5. (2.98
GeV). For this we find Ep for several different momenta of the 'Sy and fit
to the form

P2 (P2)2 02
EFp —Ey = —C — P! 11
P O OMyin 'SME,  8MY, ZZ: ' (1)

simultaneously for momenta components (1,0,0), (1,1,0), (1,1,1), (2,0,0) in
units of 27 /12a. My, is taken to be the rest mass of the n.. C; should take
the value 1.0 in a fully Lorentz invariant theory. Instead we find the value
1.7(1) - this is because of relativistic corrections that have not been included.
The mass in the P* term differs from that in the P? term by the cube root
of 1.7 i.e. 20%. Since we have included no relativistic corrections to the P*
term we would expect it to be correct only to leading order i.e. 30%, and
the difference we observe is consistent with that. We expect results closer
to 1.0 for the T because this is a more non-relativistic system. Indeed there
[3] we find a tendency for C to be larger than 1.0 but consistent with 1.0
within rather larger errors of size 0.3. The last term in equation (11) is a
non-rotationally-invariant term allowed on the lattice but (5 is found to be
—0.1(1) consistent with zero. This indicates that no discretisation errors are
visible in the dispersion relation once the O(a*) terms in the heavy quark
action have been taken care of in equation (4). A fit with the extra P®
relativistic correction in was tried and no significant signal for it was found.
Conversely a fit with just the leading order P? term in was tried but gave
a very poor () value. This suggests that with the particular momentum
components used a fit including terms up to P* is appropriate. Using a bare
quark mass of aM? = 0.8 gives My;,a = 2.429(7) or My, = 3.0(1) GeV
using ™' = 1.23(4) GeV. All simulation results quoted here are from using
this value of the bare quark mass. The error on the bare quark mass is then
of order 10% from both statistical errors in a=! and systematic errors from
higher order relativistic corrections.

In Figures (3) and (4) we show effective masses for the 'Sy and ' P; states
respectively. We use the naive definition m.ss(t) = —log(G(t + 1)/G(t)) to-
gether with bootstrap errors. From the S state plots it is clear that smearing
has the effect of producing an earlier plateau in the effective mass. Although
the statistical errors have increased for the smeared cases as compared to
the local-local case the earlier plateau allows fitting to take place closer to



the origin and ultimately produces better errors. For the first excited state a
plateau cannot be seen for the effective mass and the signal ultimately decays
to the ground state. A better transient plateau was seen for the excited S
state in the T spectrum at 3 = 6.0 [3]. This reflects the fact that at higher
(3 values the excited states have smaller masses in lattice units and last for
longer times. For the P state the signal /noise ratio is much poorer than that
for the S state, as expected.

3.1 Fitting Results for the 'S, and *S; and the singlet
P and D states

We use a variety of fitting routines to extract high precision ground state
masses for the 1Sy and 25 as well as masses for their first radially excited
states. We have used in general the same fitting procedures which are de-
scribed in more detail in [3].

Multi-exponential fits allow a fit to the correlation function at much ear-
lier times than single-exponential fits, thus reducing the noise. A fit to n
exponentials allows confidence in the masses of the first n — 1 states. Since,
as described above, excited states die very rapidly at low [, it is much harder
to get a value for an excited state mass at $=5.7 than at § = 6.0. This is
reflected in our errors. It is also true, however, that the ground state plateau
appears earlier and the use of many exponentials to get to early times is not
as important at # = 5.7 as at § = 6.0.

The first type of fit we do is that to a matrix of correlation functions:

Nemp

Grneson(Nses s 1) = > a(nge, k) a™(ngy, k)e "+ (12)

k=1

For the S states we use the combination n,. = 1,2 and ng = 1,2 forming a 2
x 2 matrix. Then we perform fits for N.,, = 2 and 3. Our fitting procedure
inverts the covariance matrix using the svd algorithm. We have sufficiently
good statistics that we are able to keep all eigenvectors of the covariance
matrix and achieve a good fit[13].

For the second fit a row of correlation functions is formed and fitted to

Nemp

Glmeson(Nse, locy t) = Z b(nse, k) e bt (13)
k=1

We use the correlation functions (nse, ng;) with ns. = 1,2 ng = loc. Again
fits use Ny, = 2, 3.

In Tables 1 and 3 are results from the row and matrix fits for the 'Sy and
3S1. The errors stated are those causing a change dy* = 1 and we also quote
the quality of the fit, Q. For an acceptable fit Q should be in the range 0.01
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Figure 3: 15, Effective masses by (source, sink).
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Figure 4: ' P, Effective masses by (source, sink).

to 0.9 and ideally () > 0.1. To improve our statistics we only bin correlation
functions which start from different spatial origins but not ones which have
different starting timeslices. This has little effect on the central value but
does increase the ( value giving us more confidence in the fit.

From both tables it is clear that an accurate ground state mass can be
obtained at very early times. Only a %,,;, of 2 gives an unacceptable Q
for the 2 exponential fit. Adding a 3rd exponential produces an acceptable
fit, although we don’t take this value because () increases further as ¢,,;, 1s
increased. This contrasts with the higher ¢,,;, needed for T spectroscopy
at # = 6.0[3]. The masses we obtain are independent of the type of fitting
routine within errors, although the values for () are lower for the matrix fits.
At this point it is constructive to test how effective the multiple exponential
fits are for the ground states at § = 5.7. In Table 2 are values for a single
exponential fit to the (ng.,ng) = (1,loc) and (1,1) for the 'Sy state. In
both cases an acceptable () requires t,,;, of 6, significantly larger than for
the multiple exponential fit. We choose fitted values 0.6182(7) and 0.697(1)
for the 'Sy and 25; ground states respectively.

For the first excited state the choice of fitted value is far more difficult.
To have confidence in the value we should use a 3 exponential fit although
this gives larger errors in the fitted masses. We look for both a steady value
in the fitted mass as ¢,,;, is changed and a steady value for Q. It is also useful
to look at the amplitude for the second excited state in the 3 exponential fit
to see at what ?,,;, values it has decayed away.

For the 'Sy row fit we choose a value 1.17(5) for the excited state mass
(average of t,,;, = 3,4,6) and from the matrix fit 1.18(4) (average of t,,;, =
3,4,5). There is then agreement within errors between the two fits and we
choose 1.17(5) as the global average. For the ®S; state there is a significant
deterioration in the Q) values over those for the 'Sy and the fitting errors are
slightly larger. This is presumably a reflection of the additional noise in the
3G} channel coming from the 'Sy. For the row fit a value of 1.19(7) (average
for ¢, = 4,5,6) is chosen and a value of 1.22(3) (average for ¢,,;, =3,4,5)
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from the matrix fit. A global average for the excited ®S; is chosen to be
1.20(7). All the fitted values are collected in Table 10.

In Tables 4 and 5 are the amplitudes from the various fits for particular
values of ¢, /tmar. The value of ¢,/ used was that where the fit for
the first excited state was closest to the average result quoted above. In both
row and matrix fits it was found that the amplitude for a second excited state
(k = 3) is essentially zero. This indicates that contamination from higher
states in our fits is negligible. From the amplitude results we can see that
ng.=1 has strongest overlap with the ground state and n,. = 2 has strongest
overlap with the first excited state, as planned. Thus our smearing functions
are projecting out the required state and suppressing the others, although
our smearing functions are clearly not optimal. It may be better to use the
output wavefunctions to produce input smearing functions in an improved
calculation. To illustrate the quality of the multi-exponential fits into early
times we have plotted in Figure 5 effective amplitude plots with the fitted
parameters quoted in Tables 4 and 5.

For the P and D states multiple exponential fits are not possible because
we have included only the ground state smearing function in the simulation.
Instead a single exponential fit was performed to the (ns.,ns) = (1,1) meson
propagators of the 1P, and 'D,. The results are shown in Tables 6 and 7.
Reasonable errors are obtained at ¢,,;, values of 6 where single exponential
fits were acceptable for the S states. Ratio fits were also done to the 1Sy
in both cases but the results and errors remained the same showing there is
no correlation between these states and the 'Sy. To isolate the ground state
early on and achieve better errors higher radial smearing functions need to

be added. Work has begun on this for the ! P, state.

3.2 Fits to Spin Splittings

As described earlier, spin splittings are very dependent on the tadpole im-
proved coupling constants ¢;. This makes the spin-splittings a good test
of the tadpole-improvement scheme. It is also true that potential models
find it hard to produce spin-splittings in agreement with experiment so we
would hope that they are also a good test of the differences between a full
calculation in QCD, such as ours, and a potential model.

Since meson correlation functions of given [ from the same configuration
are highly correlated we produce a bootstrap ensemble of ratios of correlation
functions to find spin splittings. From this we fit to a single exponential

Ratio(t) = A1 (14)

We use correlation functions with (ns.,ns) = (1,1) and bin on time and
spatial origin. We find very high Q values in general. Shown in Table 8 are

11



Nexp tmin/tmax al alsy als Q
fits to (Lloc) | 2 2/24  0.6171(6) L.172(6) 3% 107
and (2,loc) 3/24 0.6178(6)  1.16(1) 0.65
424 0.6176(6)  1.16(1) 0.64
/24 0.6179(7)  1.14(1) 0.79
6/24 0.6182(7)  1.21(5) 0.94
7/24 0.6183(7)  1.27(8) 0.93
3 2/24 0.6180(7)  1.15(2)  1.8(6) 0.38
3/24 0.6177(20) 1.15(4) 1 8+ 15 0.53
424 0.6181(6) 1.16(2) 1.8(1.2)  0.79
5/24 0.6183(7)  1.30(16) 1.7(6) 0.94
6,/24 0.6183(7)  1.19(8) 1.8(5) 0.87
7/24 0.6183(7)  1.25(24) 1.8(8) 0.85
fits to 2 324 0.6185(6) 1.18(2) 0.06
(1,1), (1,2) 424 0.6183(6)  1.17(3) 0.15
(2,1), (2,2) /24 0.6178(6)  1.16(4) 0.25
6,/24 0.6177(6)  1.08(6) 0.16
7/24 0.6181(6)  0.90(6) 0.42
3 3/24 0.6180(6) 1.19(2) 1.6(5) 0.27
424 0.6178(6)  1.14(4)  2.1(6) 0.23
/24 0.6179(6)  1.21(7)  L7(6) 0.16
6/24  0.6180(6) 1.26(11) 2(1) 0.18
7/24 0.6181(6) 0.91(6) 2(1) 0.33

Table 1: Examples of simultaneous multi-exponential fits to the 'Sy using

row and matrix fits respectively.

Nexp tmin/tmax aEl Q
fits to (L,loc) | 1 h/24 0.6188(8) 0.01
6/24  0.6184(8) 0.66
/24 0.6183(8) 0.72
fits to (L1) | 1 1/20  0.6184(3) 0.05
5/20 0.6181(8) 0.22
6/24  0.6181(8) 0.18
/24 0.6182(8) 0.15

Table 2: Examples of single exponential fits to the 'Sy .
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Nexp tmin/tmax al alsy als Q
fits to (1,106) 2 2/24 0.6951(8) 1.247(7) 4 % 107°
and (2,106) 3/24 0.6961(8) 1.23(1) 0.23

4/24 0.6958(9) 1.22(2) 0.23

5/24 0.6961(9) 1.18(2) 0.46

6/24  0.6966(9)  1.21(5) 0.56

7/24  0.6968(10) 1.25(8) 0.56

3 2/24 0.6964(9) 1.21(4) 1.9(9) 0.10

3/24 0.6957(9) 1.20(4) 1.9(1.4) 0.17

4/24 0.6964(10) 1.16(5) 1.9(1.3) 0.47

5/24  0.6967(10) 1.22(8)  1.9(5) 0.55

6/24  0.6966(7) 1.19(6)  1.9(3) 0.41

7/24 0.6969(10) 1.25(16) 1.9(2) 0.40

fits to 2 3/24 0.6970(8) 1.22(1) 0.04
(1,1), (1,2) 4/24 0.6967(8) 1.21(3)) 0.05
(2,1), (2,2) 5/24 0.6965(8) 1.24(5) 0.07
6/24  0.6966(8)  1.31(9) 0.09

7/24  0.6967(9)  0.95(8) 0.08

3 3/24  0.6966(8) 1.23(2)  1.7(6) 0.08

4/24  0.6965(8)  1.20(3)  1.8(6) 0.06

5/24 0.6964(8) 1.23(4) 2.0(2.8) 0.04

6/24  0.6969(8)  1.46(13) 1.8(1.3)  0.06

7/24  0.6967(9)  1.00(9) 1.9(1.3)  0.07

Table 3: Examples of simultaneous multi-exponential fits to the ®S; using
row and matrix fits respectively.

Fit toin/tmar K a(ngese = 1,k)  a(nse sk = 2, k)
Newy = 2 120 1 0.651(1) 0.1188(3)
for 15, 2 0.18(9) 0.52(2)
Newy = 2 5720 1 0.700(3) 0.164(1)
for 28, 2 0.29(2) 0.53(5)

Table 4: Examples of fit results for amplitudes a(ns. sk, k)
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Fit toin/tmar K b(ng. = 1, k) b(ng. =2,k)
Newp = 2 126 1 0.1037(7)  -0.0184(4)
for 15, 2 0.032(3) 0.064(2)
Ny =2 5724 1 0.103(1) 20.0253(4)
for 28, 2 0.036(7) 0.069(3)

Table 5: Examples of fit results for amplitudes b(ng., k)

Nexp tmin/tmaac aEl Q
fits to (L1) | 1 3/20  1.059(4) 0.5
424 1.052(5)  0.68
/24 1.049(T)  0.66
6/24  1.046(9)  0.62
T/24  1.048(14) 0.55

Table 6: Example of a ' P fit.
Nexp tmin/tmax aEl Q

fits to (1,1) | 1 3/20  1.35(1) 0.62

424 1.32(2) 0.77

5/24 1.30(3) 0.78

6/24  1.26(5) 0.78

/24 1.26(9) 0.72

Table 7: Example of a ! D fit.
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Figure 5: 15y Effective amplitudes G(¢) - ¢®1* from two-exponential row fits
(1,0) (2,0) and two-exponential matrix fits (1,1) (2,2) with ¢, = 4, tinae = 24

values obtained for various combinations of spin-splittings using equation
(14). The 8 F obtained for the *S; to 'Sy ratio fit is in agreement with that
obtained from the separate row and matrix fits of Tables 1 and 3. To estimate
O F for higher radial excitations we have used a correlated 6 F fit. This is a
fit to the form

Nemp

Gneson A(nse, locst) = Z (N, k) o~ B
k=1
Ne.rp

GmesonB(nscaloc;t) — CB(nscal) E +OE)-¢ + Z CB nSC7 EE(515)

with ng, = 1,2 for each meson. The results shown in Table 9 show that the
35; =1 Sy splitting can be obtained at early times with smaller errors than
in the ratio fit. Presumably extra excited states have been absorbed in the
extra terms in the correlated fit. We are unable to obtain a clear signal for a
2S hyperfine splitting although the correlated 6 £ fit above and the individual
matrix fits give an indication of such a splitting at early times.
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Splitting Newp  tomin/tmas abl Q
T — 15, | 1 424 0.0794(3) 4.0x10°°
6/24  0.0784(4) 0.35
8/24  0.0784(4) 0.32
10/24  0.0783(5) 0.21
12/24  0.0778(6) 0.25
P — "h | 1 3/13 0.090(2) 0.94
4/13  0.089(4) 0.91
5/13  0.090(6) 0.85
6/13  0.086(9) 0.81
Py — P | 1 3/13 0.045(1) 0.99
4/13  0.046(3) 0.99
5/13  0.045(4) 0.99
6/13  0.044(6) 0.97

Table 8: Examples of ratio fits for spin-splittings

onin [ tmae 115, 215, 135, — 115, 235, Q
3/24 0.6179(6) 1.17(1)  0.0779(3)  1.23(1) 0.29
4/24 0.6178(6) 1.17(1)  0.0778(3)  1.24(2) 0.33
5/24 0.6180(6) 1.16(2)  0.0777(3)  1.19(2) 0.72
6/24 0.6183(6) 1.20(4)  0.0780(4)  1.20(4) 0.88
7/24 0.6183(7) 1.20(6)  0.0781(4)  1.20(6) 0.82
8/24 0.6184(7) 1.16(11)  0.0781(4)  1.25(13) 0.76

Table 9: Example of correlated & fit for the S, and 'S, states
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Simulation Results
115, 0.6182(7)
125, 0.697(1)
215, 1.17(5)
235, 1.20(7)
1P 1.05(1)
1'D, 1.30(4)
351 =1 S, 0.0782(4)
3P, =2 P, 0.088(8)
3P, =2 P, 0.044(5)
3P =2 P, 0.044(3)
SPoy —' P 0.010(1)

Table 10: Fitted dimensionless energies.

4 Comparison with Experiment

In Table 10 we give the dimensionless splittings obtained from our fitting
procedure. To compare simulation results to experiment it is necessary to fix
the scale a=!. We choose the spin-averaged 1P-1S splitting to do this. By
spin-averaged splitting we mean the splitting between spin-averaged states.
The spin-averaged S state has mass 0.25 x [3m(®S1) + m('Sy)]. The spin-
averaged P state has either the mass of the 'P; or mass 1/9 x [bm(*P,) +
3m(®P1) + m(®Py)]. These two P masses are the same in potential models
and experimentally they do seem to be very close although the mass of the
! P, needs confirmation [14]. In our simulation the two masses are slightly
different (see Table 10). We will use m('P;) because of the previously noted
disagreement with experiment in the P fine structure. The difference in value
of the a™'s obtained is within the statistical error.

The spin-averaged 1P-1S splitting has the advantage of being independent
of any errors in spin-dependent terms and of being experimentally known
to be independent of the heavy quark mass in the ¢, b, region. This gives
much less systematic uncertainty than, for example, in light hadron spectrum
determinations of a™'. In the T spectrum calculation [3] it was possible to
see a difference in ™' between that fixed from the 25-1S splitting and that
fixed from the 1P-1S splitting. Here both our statistical error on the 2S state
and our expected systematic error from relativistic corrections are too large
for this to be possible.

Using the values in Table 10 we find a™* = 1.23(4) GeV from the 1P(* P)-
15 splitting. In Table 11 we compare the splittings obtained from this simula-
tion with experimental results. The results are plotted in Figures (1) and (2).
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Simulation Results [GeV] Experiment [GeV]

375, — 175, | 0.63(6)

255, — 135, | 0.62(3) 0.589(1)

1Dy — 150 | 0.84(5)

5Dy — 18, 0.791(3)

75, — TS, | 0.096(2) 0.118(2)

3Py — 2Py | 0.11(1) 0.141(1)

5P, — 3P, | 0.054(6) 0.0456(1)

SPear — TPy | 0.012(1) 0.0008(3)"

Table 11: NRQCD spectrum results and comparison with experiment for a=!

= 1.23 GeV and aM? = 0.8. * requires confirmation.

It is important to remember that there is a potential 30 —40 MeV systematic
error in all splittings coming from relativistic corrections not included in the
heavy quark action. Table 11 and the figures do not include the statistical
error in a~! in their quoted errors since all the splittings are correlated. Ta-
ble 11 does, however, include this error for the hyperfine splitting since this
is very sensitive to shifts in the bare quark mass allowed by uncertainties
in a=' (the hyperfine splitting behaves as 1/Mg in perturbation theory, see
equation (16) below). Using the . average for 1P would give a™' = 1.20, at
the lower end of the range for ™! from the 'P;.

As discussed earlier, the statistical error on the 2S state is too large to see
any significance in the fact that it is slightly higher than experiment. The
direction of the slight disagreement is the same as that for the T spectrum
[3]. There it seems clear that the correction of O(a?) errors in the gluon
action and unquenching will produce agreement with experiment [6, 16]. To
test this for the U we will need to reduce the statistical errors and systematic
errors from the heavy quark action in the 25 state.

The expected shift in the 1S state from gluonic O(a?) effects is 0.006
in lattice units for this simulation. This is calculated either perturbatively
from the wavefunction at the origin [6] or non-perturbatively using a lattice
potential model [15]. It is less than the shift for the T at the same value of /3
since the J/W is larger. The 1P state does not shift, since it is not sensitive
to perturbations at the origin. The change in the 1P-1S splitting would then
cause the derived a™' to change upwards to 1.25(4) GeV if gluonic O(a?)
effects were corrected. This is still within 1o of the original value. The
expected shift in the ¢’ state is 0.005 so the change in the 2S-1S splitting
would be completely negligible compared to its statistical error.

The value for a™! is clearly different from that from Y[16] or light hadron
[8] spectroscopy at the same value of 5. I