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Abstract

We present results for Charmonium spectroscopy using Non-Relativistic

QCD (NRQCD). For the NRQCD action the leading order spin-dependent

and next to leading order spin-independent interactions have been in-

cluded with tadpole-improved coe�cients. We use multi-exponential

�ts to multiple correlation functions to extract ground and excited S

states. Splittings between the lowest S, P and D states are given and

we have accurate values for the S state hyper�ne splitting and the �c
�ne structure. Agreement with experiment is good - the remaining

systematic errors are discussed.

PACS numbers: 12.38.Gc, 14.40.Gx, 14.65.Dw, 12.39.Hg

1 Introduction

The study of heavy-heavy mesons is important for Lattice Gauge Theory not
only because of the availability of experimental data for comparison but also

because such systems allow a quantitative study of systematic errors which
arise in lattice simulations at present. To study heavy-heavy mesons we

use Non-Relativistic QCD (NRQCD)[1, 2] and previously we have reported

a very successful study of the Bottomonium system[3]. This allowed the
extraction of two fundamental parameters in QCD[4], the b-quark mass [5]
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and the strong coupling constant �s [6]. Here we report on a similar study

of the Charmonium spectrum.

The starting point of NRQCD is to expand the original QCD lagrangian

in powers of v2, the typical quark velocity in a bound state. For the J=	

system v2 � 0:3. Thus we systematically include relativistic errors order by

order in v2 away from a Non-Relativistic limit. Our action is the same one as

used in [3] where relativistic corrections O(Mv4) have been included. This

means that systematic errors from relativistic corrections will be O(Mcv
6) (=

� 30� 40 MeV) for the J=	 system i.e. 10% in spin-independent splittings

and 30% in spin-dependent splittings. This is considerably less accurate than

for the � case[3] because v2 is about a factor of 3 larger here. Other sources of

systematic error include discretisation errors and errors from the absence of
virtual quark loops because we use quenched con�gurations generated with
the standard plaquette action. Finite volume errors should be negligible
because of the relatively small size of the J=	 system.

Shown in Figures (1) and (2) is the spectrum for Charmonium using Lat-
tice NRQCD. The spectrum was calculated using an ensemble of 273 gauge

�eld con�gurations generated with the standard Wilson action at � = 5.7[7].
To set the scale we �x our simulation result for the spin-averaged 1P-1S
splitting to its experimental value of 458 MeV. This gives a�1 = 1.23(4)
GeV, where the uncertainty is purely statistical. Since we are working in the
quenched approximation this value can be and is di�erent both from that ob-

tained at the same value of � using light hadron spectroscopy[8] or using Up-
silon spectroscopy[9]. We expect a value �xed from heavyonium to be more
accurate than that from light hadron spectroscopy because spin-independent
splittings in the heavy quark sector are independent of quark mass to a good
approximation and systematic errors are under better control[1].

To �x the bare quark mass in the action,M0
c , we plot a dispersion relation

correct up to O(v4) for the �c. M
0
c is then tuned until the simulation value

for the kinetic mass is equal to the experimental value of the mass of the �c
(2.98 GeV). We �nd that using aM0

c=0.8 gives M(�c)=3.0(1) GeV with a�1

= 1.23(4) GeV.

In Figure (1) the whole Charmonium spectrum is shown and in Figure (2)
the spin-dependent splittings are shown in more detail. In Figure (2) it can

be seen that although the general pattern of splittings for the S and P states
is reproduced well, systematic errors are visible above the statistical errors. It

should then be possible in the future to observe systematic improvements to
the current calculation, when higher order relativistic corrections are included

and further discretisation and quenching errors are removed.

We give details in section 2 of our evolution equation and the quark Greens
function used to make up meson correlation functions. Section 3 describes

the results from the simulation using multi-exponential �ts. We illustrate
the need for multiple smearing functions to obtain smaller statistical errors.
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Figure 1: NRQCD simulation results for the spectrum of the J=	 system

using an inverse lattice spacing of 1.23 GeV, �xed from the spin-averaged
1P-1S splitting. The 1S0 mass is �xed at 3.0 GeV, from a �t to the kinetic
mass. Experimental values are indicated by dashed lines. Error bars are
shown where visible, and only indicate statistical uncertainties.

Section 4 compares simulation results to experiment and section 5 contains
our conclusion.

2 Evolution Equation and Quark propaga-

tors

One of the advantages of the formulation of NRQCD is that it involves a sim-
ple di�erence equation in the temporal direction. This allows the evolution
of the quark Green function as an initial value problem which can be solved

with one sweep through the lattice. We de�ne our quark Green function to

be initially

G1 =

�
1�

aH0

2n

�n
Uy
4

�
1�

aH0

2n

�n
�~x;0 (1)

and then continue to evolve using

Gt+1 =

�
1�

aH0

2n

�n
U

y
4

�
1�

aH0

2n

�n
(1�a�H)Gt (t > 1): (2)
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Figure 2: Simulation results for the spin structure of the J=	 family, using
an inverse lattice spacing of 1.23 GeV. The energies of the spin-averaged S

and P states have been set to zero. Error bars for points are statistical.

On the lattice, the kinetic energy operator is

H0 = �
�(2)

2M0
c

; (3)

and the correction terms are

�H = �c1
(�(2))2

8(M0
c )

3
+ c2

ig

8(M0
c )

2
(� �E�E ��)

�c3
g

8(M0
c )

2
� � (��E�E��)� c4

g

2M0
c

� �B

+c5
a2�(4)

24M0
c

� c6
a(�(2))2

16n(M0
c )

2
: (4)

The �rst two terms in �H are spin-independent relativistic corrections and
the next two are spin-dependent correction terms which contribute to the P

and S spin splittings respectively. The last two terms come from �nite lattice
spacing corrections to the lattice Laplacian and the lattice time derivative.

� is the symmetric lattice derivative, �(2) is the lattice form of the Laplacian
and �(4) is a lattice version of the continuum operator

P
D4
i . We used the

standard traceless cloverleaf operators for the chromo-electric and magnetic

�elds, E and B. The parameter n is introduced to remove instabilities in

the heavy quark propagator caused by the highest momentum modes of the
theory[1]. For our simulations at � = 5:7 and with a bare mass for the c

quark in lattice units of 0.8, we set n = 4.
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The coupling constants ci appearing in equation (4) can be calculated

by matching NRQCD to full QCD [2, 10]. At tree level all the coe�-

cients are one. The largest radiative corrections are believed to be tadpole

contributions[11]. We take care of these by using the method suggested in

[11] where all the U's are rede�ned by

U�(x)!
U�(x)

u0
(5)

with u0 the fourth root of the plaquette (at �=5.7 we use u0 = 0.861).

Since the cloverleaf expression involves the evaluation of a plaquette this

renormalization will have the e�ect of rede�ning E and B via

E!
E

u40
B!

B

u40
(6)

which will strongly a�ect spin-dependent splittings. With the dominant tad-
pole contributions thus removed, we use the tree level values for the ci's. The

only remaining free parameters are the bare quark mass M0
c and the bare

coupling constant g which appear in the original QCD Lagrangian. All the
details of the quark evolution up to this point are identical to those in [3].
In the following some of the technical details di�er slightly.

Given the quark propagators in equation (2) it is relatively straightfor-

ward to combine them appropriately to form meson propagators with speci�c

quantum numbers. Using the notation of [3] we take  y to create a heavy

quark and �y to create a heavy anti-quark. Then the following interpolating
operator creates a meson centred on the point ~x1 :

X
~x2

 y(~x1) �(~x1 � ~x2)�
y(~x2): (7)

Local meson operators are tabulated in [3]. Here we generalise the operators

to include `smearing functions'. For S states the meson operator � becomes

 �( ~x1 � ~x2) where 
 is a 2 � 2 matrix in spin space giving the quantum

numbers of the meson and � is a simple approximation to the wavefunction.
For P states, � also becomes a p wavefunction, which can be thought of as

the derivative of a spherically symmetric function [3]. In general � is a sum

of spin matrices multiplying di�erent smearing functions, generalising the
operators in [3]. For the wavefunctions � we use here wavefunctions from a

1=r potential with their spread adjusted to match the size of the appropriate
meson.

For meson propagators at zero momentum we then have

Gmeson(~p = 0; t) =
X
~y1;~y2

Tr

�
G

y
t(~y2) �

(sk)y(~y1 � ~y2) ~Gt(~y1)

�
(8)

5



with
~Gt(~y) �

X
~x

Gt(~y � ~x) �(sc)(~x): (9)

�sc(x) and �sk(x) refers to the meson operator �(x) = 
�(x) with the smear-

ing function �(x) at the source or sink respectively and enumerated by the

integer nsc or nsk. n = 1 corresponds to the ground state meson, n = 2 to

the �rst radially excited state. ~Gt is obtained using equations (1) and (2)

with �~x;0 ! �(sc)(~x). The trace is over color and spin. The convolutions are

evaluated using Fast Fourier Transforms.

We also study �nite momentum propagators for the 1S0 meson, given by:

Gmeson(~p; t) =
X
~y1

Tr
h
G

y
t(~y1)
 ~Gt(~y1)

i
e�i~p�~y1 (10)

Using the notation 2S+1LJ , we have looked at meson propagators for the

following states: 1S0,
3S1,

1P1,
3P0,

3P1,
3P2 for both the E and T repre-

sentation and the 1D2 in the T representation. For the S states, smearing
functions both for the ground and �rst radially excited state were used as
well as a local � function (n = loc). From this all possible combinations
of smearing at the source and sink were formed making a 3 � 3 matrix of

correlation functions. For the P and D states only the ground state smearing
function was used at the source. We calculated the dispersion relation for
the 1S0 by looking at the meson propagator for small momentum components
using (nsc; nsk) = (loc; loc) and (1; loc). To maximize our statistics we use all
color and spin indices at the source when calculating our meson propagators.

For the 3S1,
1P1,

3P1,
3P2 and 1D2 we average over polarization directions

making a total of 30 S, P and D meson propagators to analyze.

3 Simulation results

In the simulation we used 273 quenched gluon �eld con�gurations on a 123x24
lattice at � = 5:7 generously supplied by the UKQCD collaboration[7]. They

were �xed to Coulomb gauge using a Fourier accelerated steepest descents
algorithm [12] with a cuto� on [@ � A]2 of 10�6. Due to the relatively small

size of the J=	 it is possible to use more than one starting site on a spatial

slice. We also use more than one starting point in time to increase statistics.
In this case we used 8 di�erent spatial origins and 2 di�erent starting times
at timeslice 1 and 12. If we bin the spatial origins together we �nd signif-

icant correlation, whereas binning together two propagators with an initial

timeslice of 1 and 12 but with the same spatial origin gives little or no corre-

lation at all. For most of our �ts we bin together all the correlation functions
from a given con�guration, except when doing multiple-exponential multiple-

correlation �ts for the 1S0 and
3S1 case. Here we only bin on spatial origin
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and having the increased sample size from the time direction signi�cantly

improves the �t. We also checked, however, that �tting with all data un-

binned produces a worse �2 than when all data is binned, another indicator

of spatial correlations.

In NRQCD, as in QCD, there are two free parameters, the bare coupling

constant g and the bare quark mass M0
c . We �x g implicitly when we set

the scale a�1. To �xM0
c we tune so that the simulation result for the kinetic

mass of the 1S0 agrees with the experimental value of the mass of the �c (2.98

GeV). For this we �nd EP for several di�erent momenta of the 1S0 and �t

to the form

EP �E0 =
P2

2Mkin

� C1

(P2)2

8M3
kin

�
C2

8M3
kin

X
i

P4
i (11)

simultaneously for momenta components (1,0,0), (1,1,0), (1,1,1), (2,0,0) in
units of 2�=12a. Mkin is taken to be the rest mass of the �c. C1 should take
the value 1.0 in a fully Lorentz invariant theory. Instead we �nd the value
1.7(1) - this is because of relativistic corrections that have not been included.

The mass in the P4 term di�ers from that in the P2 term by the cube root
of 1.7 i.e. 20%. Since we have included no relativistic corrections to the P4

term we would expect it to be correct only to leading order i.e. 30%, and
the di�erence we observe is consistent with that. We expect results closer
to 1.0 for the � because this is a more non-relativistic system. Indeed there

[3] we �nd a tendency for C1 to be larger than 1.0 but consistent with 1.0
within rather larger errors of size 0.3. The last term in equation (11) is a
non-rotationally-invariant term allowed on the lattice but C2 is found to be
�0:1(1) consistent with zero. This indicates that no discretisation errors are
visible in the dispersion relation once the O(a2) terms in the heavy quark

action have been taken care of in equation (4). A �t with the extra P6

relativistic correction in was tried and no signi�cant signal for it was found.

Conversely a �t with just the leading order P2 term in was tried but gave

a very poor Q value. This suggests that with the particular momentum
components used a �t including terms up to P4 is appropriate. Using a bare

quark mass of aM0
c = 0.8 gives Mkina = 2:429(7) or Mkin = 3:0(1) GeV

using a�1 = 1.23(4) GeV. All simulation results quoted here are from using

this value of the bare quark mass. The error on the bare quark mass is then

of order 10% from both statistical errors in a�1 and systematic errors from
higher order relativistic corrections.

In Figures (3) and (4) we show e�ective masses for the 1S0 and
1P1 states

respectively. We use the na��ve de�nition meff(t) = �log(G(t + 1)=G(t)) to-

gether with bootstrap errors. From the S state plots it is clear that smearing

has the e�ect of producing an earlier plateau in the e�ective mass. Although
the statistical errors have increased for the smeared cases as compared to

the local-local case the earlier plateau allows �tting to take place closer to
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the origin and ultimately produces better errors. For the �rst excited state a

plateau cannot be seen for the e�ective mass and the signal ultimately decays

to the ground state. A better transient plateau was seen for the excited S

state in the � spectrum at � = 6.0 [3]. This reects the fact that at higher

� values the excited states have smaller masses in lattice units and last for

longer times. For the P state the signal/noise ratio is much poorer than that

for the S state, as expected.

3.1 Fitting Results for the 1
S0 and

3
S1 and the singlet

P and D states

We use a variety of �tting routines to extract high precision ground state
masses for the 1S0 and 3S1 as well as masses for their �rst radially excited
states. We have used in general the same �tting procedures which are de-

scribed in more detail in [3].
Multi-exponential �ts allow a �t to the correlation function at much ear-

lier times than single-exponential �ts, thus reducing the noise. A �t to n
exponentials allows con�dence in the masses of the �rst n� 1 states. Since,
as described above, excited states die very rapidly at low �, it is much harder

to get a value for an excited state mass at �=5.7 than at � = 6.0. This is
reected in our errors. It is also true, however, that the ground state plateau
appears earlier and the use of many exponentials to get to early times is not
as important at � = 5.7 as at � = 6.0.

The �rst type of �t we do is that to a matrix of correlation functions:

Gmeson(nsc; nsk; t) =
NexpX
k=1

a(nsc; k) a
�(nsk; k)e

�Ek�t (12)

For the S states we use the combination nsc = 1; 2 and nsk = 1; 2 forming a 2

x 2 matrix. Then we perform �ts for Nexp = 2 and 3. Our �tting procedure

inverts the covariance matrix using the svd algorithm. We have su�ciently
good statistics that we are able to keep all eigenvectors of the covariance
matrix and achieve a good �t[13].

For the second �t a row of correlation functions is formed and �tted to

Gmeson(nsc; loc; t) =
NexpX
k=1

b(nsc; k) e
�Ek�t (13)

We use the correlation functions (nsc; nsk) with nsc = 1; 2 nsk = loc. Again

�ts use Nexp = 2, 3.
In Tables 1 and 3 are results from the row and matrix �ts for the 1S0 and

3S1. The errors stated are those causing a change ��2 = 1 and we also quote

the quality of the �t, Q. For an acceptable �t Q should be in the range 0.01
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Figure 3: 1S0 E�ective masses by (source, sink).
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Figure 4: 1P1 E�ective masses by (source, sink).

to 0.9 and ideally Q > 0:1. To improve our statistics we only bin correlation
functions which start from di�erent spatial origins but not ones which have
di�erent starting timeslices. This has little e�ect on the central value but
does increase the Q value giving us more con�dence in the �t.

From both tables it is clear that an accurate ground state mass can be

obtained at very early times. Only a tmin of 2 gives an unacceptable Q
for the 2 exponential �t. Adding a 3rd exponential produces an acceptable
�t, although we don't take this value because Q increases further as tmin is
increased. This contrasts with the higher tmin needed for � spectroscopy
at � = 6.0[3]. The masses we obtain are independent of the type of �tting

routine within errors, although the values for Q are lower for the matrix �ts.
At this point it is constructive to test how e�ective the multiple exponential
�ts are for the ground states at � = 5.7. In Table 2 are values for a single
exponential �t to the (nsc; nsk) = (1; loc) and (1; 1) for the 1S0 state. In
both cases an acceptable Q requires tmin of 6, signi�cantly larger than for
the multiple exponential �t. We choose �tted values 0.6182(7) and 0.697(1)

for the 1S0 and
3S1 ground states respectively.

For the �rst excited state the choice of �tted value is far more di�cult.

To have con�dence in the value we should use a 3 exponential �t although

this gives larger errors in the �tted masses. We look for both a steady value
in the �tted mass as tmin is changed and a steady value for Q. It is also useful

to look at the amplitude for the second excited state in the 3 exponential �t
to see at what tmin values it has decayed away.

For the 1S0 row �t we choose a value 1.17(5) for the excited state mass

(average of tmin = 3,4,6) and from the matrix �t 1.18(4) (average of tmin =
3,4,5). There is then agreement within errors between the two �ts and we

choose 1.17(5) as the global average. For the 3S1 state there is a signi�cant
deterioration in the Q values over those for the 1S0 and the �tting errors are

slightly larger. This is presumably a reection of the additional noise in the
3S1 channel coming from the 1S0. For the row �t a value of 1.19(7) (average
for tmin = 4,5,6) is chosen and a value of 1.22(3) (average for tmin =3,4,5)
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from the matrix �t. A global average for the excited 3S1 is chosen to be

1.20(7). All the �tted values are collected in Table 10.

In Tables 4 and 5 are the amplitudes from the various �ts for particular

values of tmin=tmax. The value of tmin=tmax used was that where the �t for

the �rst excited state was closest to the average result quoted above. In both

row and matrix �ts it was found that the amplitude for a second excited state

(k = 3) is essentially zero. This indicates that contamination from higher

states in our �ts is negligible. From the amplitude results we can see that

nsc=1 has strongest overlap with the ground state and nsc = 2 has strongest

overlap with the �rst excited state, as planned. Thus our smearing functions

are projecting out the required state and suppressing the others, although

our smearing functions are clearly not optimal. It may be better to use the
output wavefunctions to produce input smearing functions in an improved
calculation. To illustrate the quality of the multi-exponential �ts into early
times we have plotted in Figure 5 e�ective amplitude plots with the �tted
parameters quoted in Tables 4 and 5.

For the P and D states multiple exponential �ts are not possible because

we have included only the ground state smearing function in the simulation.
Instead a single exponential �t was performed to the (nsc; nsk) = (1; 1) meson
propagators of the 1P1 and 1D2. The results are shown in Tables 6 and 7.
Reasonable errors are obtained at tmin values of 6 where single exponential
�ts were acceptable for the S states. Ratio �ts were also done to the 1S0
in both cases but the results and errors remained the same showing there is
no correlation between these states and the 1S0. To isolate the ground state
early on and achieve better errors higher radial smearing functions need to
be added. Work has begun on this for the 1P1 state.

3.2 Fits to Spin Splittings

As described earlier, spin splittings are very dependent on the tadpole im-
proved coupling constants ci. This makes the spin-splittings a good test

of the tadpole-improvement scheme. It is also true that potential models

�nd it hard to produce spin-splittings in agreement with experiment so we
would hope that they are also a good test of the di�erences between a full
calculation in QCD, such as ours, and a potential model.

Since meson correlation functions of given l from the same con�guration

are highly correlated we produce a bootstrap ensemble of ratios of correlation
functions to �nd spin splittings. From this we �t to a single exponential

Ratio(t) = Ae��Et (14)

We use correlation functions with (nsc; nsk) = (1,1) and bin on time and

spatial origin. We �nd very high Q values in general. Shown in Table 8 are

11



Nexp tmin=tmax aE1 aE2 aE3 Q

�ts to (1,loc) 2 2/24 0.6171(6) 1.172(6) 2 � 10�3

and (2,loc) 3/24 0.6178(6) 1.16(1) 0.65

4/24 0.6176(6) 1.16(1) 0.64
5/24 0.6179(7) 1.14(1) 0.79

6/24 0.6182(7) 1.21(5) 0.94
7/24 0.6183(7) 1.27(8) 0.93

3 2/24 0.6180(7) 1.15(2) 1.8(6) 0.38

3/24 0.6177(20) 1.15(4) 1.8 � 15 0.53
4/24 0.6181(6) 1.16(2) 1.8(1.2) 0.79

5/24 0.6183(7) 1.30(16) 1.7(6) 0.94
6/24 0.6183(7) 1.19(8) 1.8(5) 0.87
7/24 0.6183(7) 1.25(24) 1.8(8) 0.85

�ts to 2 3/24 0.6185(6) 1.18(2) 0.06

(1,1), (1,2) 4/24 0.6183(6) 1.17(3) 0.15
(2,1), (2,2) 5/24 0.6178(6) 1.16(4) 0.25

6/24 0.6177(6) 1.08(6) 0.16

7/24 0.6181(6) 0.90(6) 0.42
3 3/24 0.6180(6) 1.19(2) 1.6(5) 0.27

4/24 0.6178(6) 1.14(4) 2.1(6) 0.23

5/24 0.6179(6) 1.21(7) 1.7(6) 0.16
6/24 0.6180(6) 1.26(11) 2(1) 0.18
7/24 0.6181(6) 0.91(6) 2(1) 0.33

Table 1: Examples of simultaneous multi-exponential �ts to the 1S0 using

row and matrix �ts respectively.

Nexp tmin=tmax aE1 Q

�ts to (1,loc) 1 5/24 0.6188(8) 0.01

6/24 0.6184(8) 0.66

7/24 0.6183(8) 0.72

�ts to (1,1) 1 4/24 0.6184(8) 0.05
5/24 0.6181(8) 0.22

6/24 0.6181(8) 0.18
7/24 0.6182(8) 0.15

Table 2: Examples of single exponential �ts to the 1S0 .
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Nexp tmin=tmax aE1 aE2 aE3 Q

�ts to (1,loc) 2 2/24 0.6951(8) 1.247(7) 4 � 10�5

and (2,loc) 3/24 0.6961(8) 1.23(1) 0.23

4/24 0.6958(9) 1.22(2) 0.23
5/24 0.6961(9) 1.18(2) 0.46

6/24 0.6966(9) 1.21(5) 0.56

7/24 0.6968(10) 1.25(8) 0.56
3 2/24 0.6964(9) 1.21(4) 1.9(9) 0.10

3/24 0.6957(9) 1.20(4) 1.9(1.4) 0.17
4/24 0.6964(10) 1.16(5) 1.9(1.3) 0.47
5/24 0.6967(10) 1.22(8) 1.9(5) 0.55

6/24 0.6966(7) 1.19(6) 1.9(3) 0.41
7/24 0.6969(10) 1.25(16) 1.9(2) 0.40

�ts to 2 3/24 0.6970(8) 1.22(1) 0.04
(1,1), (1,2) 4/24 0.6967(8) 1.21(3)) 0.05
(2,1), (2,2) 5/24 0.6965(8) 1.24(5) 0.07

6/24 0.6966(8) 1.31(9) 0.09
7/24 0.6967(9) 0.95(8) 0.08

3 3/24 0.6966(8) 1.23(2) 1.7(6) 0.08
4/24 0.6965(8) 1.20(3) 1.8(6) 0.06

5/24 0.6964(8) 1.23(4) 2.0(2.8) 0.04

6/24 0.6969(8) 1.46(13) 1.8(1.3) 0.06
7/24 0.6967(9) 1.00(9) 1.9(1.3) 0.07

Table 3: Examples of simultaneous multi-exponential �ts to the 3S1 using
row and matrix �ts respectively.

Fit tmin=tmax k a(nsc;sk = 1; k) a(nsc;sk = 2; k)

Nexp = 2 4/24 1 0.681(1) -0.1188(8)

for 1S0 2 0.18(9) 0.52(2)

Nexp = 2 5/24 1 0.700(3) -0.164(1)

for 3S1 2 0.29(2) 0.53(5)

Table 4: Examples of �t results for amplitudes a(nsc;sk; k)
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Fit tmin=tmax k b(nsc = 1; k) b(nsc = 2; k)

Nexp = 2 4/24 1 0.1037(7) -0.0184(4)

for 1S0 2 0.032(3) 0.064(2)

Nexp = 2 5/24 1 0.103(1) -0.0253(4)

for 3S1 2 0.036(7) 0.069(3)

Table 5: Examples of �t results for amplitudes b(nsc; k)

Nexp tmin=tmax aE1 Q

�ts to (1,1) 1 3/24 1.059(4) 0.45
4/24 1.052(5) 0.68
5/24 1.049(7) 0.66

6/24 1.046(9) 0.62
7/24 1.048(14) 0.55

Table 6: Example of a 1P1 �t.

Nexp tmin=tmax aE1 Q

�ts to (1,1) 1 3/24 1.35(1) 0.62
4/24 1.32(2) 0.77

5/24 1.30(3) 0.78

6/24 1.26(5) 0.78
7/24 1.26(9) 0.72

Table 7: Example of a 1D2 �t.
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Figure 5: 1S0 E�ective amplitudes G(t) � eE1�t from two-exponential row �ts

(1,`) (2,`) and two-exponential matrix �ts (1,1) (2,2) with tmin = 4; tmax = 24
.

values obtained for various combinations of spin-splittings using equation
(14). The �E obtained for the 3S1 to

1S0 ratio �t is in agreement with that
obtained from the separate row and matrix �ts of Tables 1 and 3. To estimate
�E for higher radial excitations we have used a correlated �E �t. This is a
�t to the form

Gmeson A(nsc; loc; t) =

NexpX
k=1

cA(nsc; k) e
�EA

k
�t

Gmeson B(nsc; loc; t) = cB(nsc; 1) e
�(EA

1
+�E)�t +

NexpX
k=2

cB(nsc; k) e
�EB

k
�t(15)

with nsc = 1; 2 for each meson. The results shown in Table 9 show that the
3S1 �

1 S0 splitting can be obtained at early times with smaller errors than
in the ratio �t. Presumably extra excited states have been absorbed in the

extra terms in the correlated �t. We are unable to obtain a clear signal for a

2S hyper�ne splitting although the correlated �E �t above and the individual

matrix �ts give an indication of such a splitting at early times.
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Splitting Nexp tmin=tmax a�E Q
3S1 � 1S0 1 4/24 0.0794(3) 4:0� 10�5

6/24 0.0784(4) 0.35

8/24 0.0784(4) 0.32
10/24 0.0783(5) 0.21

12/24 0.0778(6) 0.25
3P2E � 3P0 1 3/13 0.090(2) 0.94

4/13 0.089(4) 0.91

5/13 0.090(6) 0.85
6/13 0.086(9) 0.81

3P2E � 3P1 1 3/13 0.045(1) 0.99

4/13 0.046(3) 0.99
5/13 0.045(4) 0.99
6/13 0.044(6) 0.97

Table 8: Examples of ratio �ts for spin-splittings

tmin=tmax 11S0 21S0 13S1 � 11S0 23S1 Q

3/24 0.6179(6) 1.17(1) 0.0779(3) 1.23(1) 0.29

4/24 0.6178(6) 1.17(1) 0.0778(3) 1.24(2) 0.33
5/24 0.6180(6) 1.16(2) 0.0777(3) 1.19(2) 0.72

6/24 0.6183(6) 1.20(4) 0.0780(4) 1.20(4) 0.88
7/24 0.6183(7) 1.20(6) 0.0781(4) 1.20(6) 0.82

8/24 0.6184(7) 1.16(11) 0.0781(4) 1.25(13) 0.76

Table 9: Example of correlated �E �t for the 3S1 and
1S0 states
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Simulation Results

11S0 0.6182(7)

13S1 0.697(1)

21S0 1.17(5)

23S1 1.20(7)

11P1 1.05(1)

11D2 1.30(4)
3S1 �

1 S0 0.0782(4)
3P2 �

3 P0 0.088(8)
3P2 �

3 P1 0.044(5)
3P1 �

3 P0 0.044(3)
3PCM �1 P1 0.010(1)

Table 10: Fitted dimensionless energies.

4 Comparison with Experiment

In Table 10 we give the dimensionless splittings obtained from our �tting
procedure. To compare simulation results to experiment it is necessary to �x
the scale a�1. We choose the spin-averaged 1P-1S splitting to do this. By

spin-averaged splitting we mean the splitting between spin-averaged states.
The spin-averaged S state has mass 0:25 � [3m(3S1) + m(1S0)]. The spin-
averaged P state has either the mass of the 1P1 or mass 1=9 � [5m(3P2) +
3m(3P1) + m(3P0)]. These two P masses are the same in potential models
and experimentally they do seem to be very close although the mass of the
1P1 needs con�rmation [14]. In our simulation the two masses are slightly
di�erent (see Table 10). We will use m(1P1) because of the previously noted

disagreement with experiment in the P �ne structure. The di�erence in value

of the a�1s obtained is within the statistical error.
The spin-averaged 1P-1S splitting has the advantage of being independent

of any errors in spin-dependent terms and of being experimentally known
to be independent of the heavy quark mass in the c, b, region. This gives

much less systematic uncertainty than, for example, in light hadron spectrum
determinations of a�1. In the � spectrum calculation [3] it was possible to
see a di�erence in a�1 between that �xed from the 2S-1S splitting and that

�xed from the 1P-1S splitting. Here both our statistical error on the 2S state
and our expected systematic error from relativistic corrections are too large

for this to be possible.

Using the values in Table 10 we �nd a�1 = 1.23(4) GeV from the 1P(1P1)-
1S splitting. In Table 11 we compare the splittings obtained from this simula-

tion with experimental results. The results are plotted in Figures (1) and (2).
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Simulation Results [GeV] Experiment [GeV]

21S0 � 11S0 0.68(6)

23S1 � 13S1 0.62(8) 0.589(1)
1D2 � 1S0 0.84(5)
3D1 � 1S0 0.791(3)
3S1 � 1S0 0.096(2) 0.118(2)
3P 2 � 3P 0 0.11(1) 0.141(1)
3P 2 � 3P 1 0.054(6) 0.0456(1)
3PCM � 1P 1 0.012(1) 0:0008(3)�

Table 11: NRQCD spectrum results and comparison with experiment for a�1

= 1.23 GeV and aM0
c = 0.8. � requires con�rmation.

It is important to remember that there is a potential 30�40 MeV systematic
error in all splittings coming from relativistic corrections not included in the
heavy quark action. Table 11 and the �gures do not include the statistical
error in a�1 in their quoted errors since all the splittings are correlated. Ta-
ble 11 does, however, include this error for the hyper�ne splitting since this

is very sensitive to shifts in the bare quark mass allowed by uncertainties
in a�1 (the hyper�ne splitting behaves as 1=MQ in perturbation theory, see
equation (16) below). Using the �c average for 1P would give a�1 = 1.20, at
the lower end of the range for a�1 from the 1P1.

As discussed earlier, the statistical error on the 2S state is too large to see

any signi�cance in the fact that it is slightly higher than experiment. The
direction of the slight disagreement is the same as that for the � spectrum
[3]. There it seems clear that the correction of O(a2) errors in the gluon
action and unquenching will produce agreement with experiment [6, 16]. To

test this for the 	 we will need to reduce the statistical errors and systematic

errors from the heavy quark action in the 2S state.
The expected shift in the 1S state from gluonic O(a2) e�ects is 0.006

in lattice units for this simulation. This is calculated either perturbatively
from the wavefunction at the origin [6] or non-perturbatively using a lattice

potential model [15]. It is less than the shift for the � at the same value of �

since the J=	 is larger. The 1P state does not shift, since it is not sensitive
to perturbations at the origin. The change in the 1P-1S splitting would then

cause the derived a�1 to change upwards to 1.25(4) GeV if gluonic O(a2)

e�ects were corrected. This is still within 1� of the original value. The
expected shift in the  0 state is 0.005 so the change in the 2S-1S splitting

would be completely negligible compared to its statistical error.

The value for a�1 is clearly di�erent from that from �[16] or light hadron
[8] spectroscopy at the same value of �. In the quenched approximation we
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would expect a�1

bb
> a�1

cc > a�1
m�
, reecting the ordering of the momentum

scales appropriate to the di�erent quantities. In current results, the �rst

inequality holds but the second one does not[16]; this may reect O(a) errors

in present light hadron spectroscopy. Further calculations at di�erent values

of a will resolve this problem.

The 1D2 state whose mass we have calculated is rather higher than that

found for the  (3770), thought to be a 3D1 state. From the spin splittings

alone you would expect this di�erence. The  (3770) is also above threshold

for decay to DD so quenching might have a signi�cant e�ect on masses in

this region, although the ratio of the width of the  (3770) to its mass is still

less than 1%. The 3D1 has the same JPC quantum numbers as the 3S1 and

will appear as a third excited state in that channel. In order to observe such
a state the cross-correlation between the meson correlators 3S1 and the 3D1

would have to be calculated and we have not attempted to do this here.
Values for the wave function at the origin can be obtained as discussed in

ref. [3]. If we include the (loc; loc) correlation function in a multi-exponential
row �t we obtain a value of a3=2 (0) for the J=	 of 0.1535. This method

does not yield a stable value for the excited states since the (loc; loc) cor-
relation function does not distinguish di�erent states very readily. A better
method is take a ratio of amplitudes from row and matrix �ts [3]. We use
b(nsc;m)=a(nsc;m) and concentrate on the diagonal entries i.e. nsc = m =1
for J=	 and nsc = 2 for  0. This gives a3=2 (0) = 0.148(2) for J=	 and

0.13(1) for  0.
The leptonic width can be calculated from  (0) using the Van-Royen

Weisskopf formula[17] at leading order. We obtain 5.4(5) keV for the J=	
in good agreement with the experimental value of 5.3(3) keV. The error we
quote is dominated by the error in a�1 since this appears cubed. In principle

we expect large corrections (� 30%) to our value when a current correctly
matched to the continuum current is included, instead of the na��ve lowest

order current that we have used. We should apply small-components correc-

tions to the current [18] as well as a lattice-to-continuum renormalisation.
The agreement with experiment should thus not be taken to be very signi�-

cant at this stage. For the  0 the agreement with experiment is not so good.
The experimental value is less than half of that for the 1S and yet we obtain

a ratio of 0.7 to the 1S. This trend for excited states to have too large a
value for  (0) is again similar to that found in the � case. On improving the

systematic error in our currents we would hope to notice an improvement
here unless it is a feature of the quenched approximation.

Spin splittings have been calculated for the ground S and P states. These

are shown in detail in Figure (2). The agreement with experiment is good
within expected systematic errors of 30�40 MeV. This would not be possible

without tadpole-improvement of the spin-dependent terms. It was clear from
the � spectrum[3] that splittings without tadpole improvement were about
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half the size of those with tadpole improvement. This would be an even

bigger e�ect here where � and u0 are smaller. There is nevertheless some

disagreement with experiment in Figure (2), and it is useful to �nd the source

of this. There are su�cient experimental results for charmonium that the

system provides a good test of the systematic removal of sources of error.

From Table 11 we can see that the hyper�ne splitting M(3S1)�M(1S0)

has a very small statistical error. The di�erence from experiment then shows

up clearly and is presumably a result of our systematic errors. There is again

a 30 � 40 MeV systematic error from higher order relativistic, discretisation

and radiative corrections to the heavy quark action. This would be quite

su�cient to explain the di�erence. Relativistic corrections are documented

in [1]. The radiative corrections are O(g2) corrections to the coe�cient of

the � � ~B term beyond tadpole improvement. The discretisation errors are
O(a2) errors in the ~B �eld and the hyper�ne splitting is rather sensitive to

these, as discussed below. We also expect quenching to have a signi�cant
e�ect, however. A comparison of � results on quenched and unquenched
con�gurations shows an increase in the hyper�ne splitting when unquenched
(to 3 avours) of between 30% and 50% [6, 16]. This can be explained largely
on the basis of the di�erence between quenched and unquenched coupling

constants and wavefunctions appearing in the perturbative formula for the
hyper�ne splitting,

�Mhfs =
32� �s(MQ)

9M2
c

j (0)j
2
: (16)

For the J=	 case we might expect a similar shift of the hyper�ne splitting
on going to the full theory and this again would be su�cient to explain fully
the deviation from experiment. One problem here is that the perturbative
formulae are not quite as reliable as in the � case [6].

A calculation of the cc hyper�ne splitting by the Fermilab group [19] gives

a somewhat smaller value than ours. They use an improved Wilson fermion

action for the heavy quarks and this approach has di�erent systematic errors
than ours.

The case of the P state �ne splittings is much more complicated, with
an expected interplay of short and long range e�ects. In a potential model

approach [20] two terms contribute - one proportional to h~L � ~Si and the other

proportional to hS12i where S12 = 4[3(~s1 �n̂)(~s2 �n̂� ~s1 � ~s2)]. Here s1 and s2 are
the spins of the heavy quarks and n̂ is an arbitrary unit vector. Evaluating
these expectation values for 3P0,

3P1 and 3P2 states of equal mass quarks

allows us to compare ratios of the splittings, since the the expectation values

of potentials that accompany these terms are the same for all P states. A

useful ratio [20] is

r =
M(�2) �M(�1)

M(�1) �M(�0)
(17)
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Experimental values are 0.48(1) for cc, 0.66(2) for bb (1P) and 0.58(3) for

bb (2P). From a comparison of possible potentials to experiment the conven-

tional picture emerges in which the spin-orbit potential appearing with ~L � ~S

has both short and long range pieces, whereas the tensor potential appearing

with S12 has only a short range piece. The short-range pieces can be re-

lated to 1-gluon exchange in perturbation theory and behave like 1=R3. The

long-range piece comes from the scalar con�ning potential. Spin-dependent

potentials can be extracted on the lattice from expectation values of Wil-

son loops with E and B �eld insertions along the time lines on either side.

There it becomes clear that the `same-side' spin-orbit potential is long-range,

whereas the `opposite-side' is short-range, as is the tensor potential[21].
We can extract values for the above ratio r of P spin splittings from our

simulation and we �nd 1.2(2) for cc, clearly too large. The bb (1P) result at
� = 6.0 [3] is 0.7(3), which is consistent with experiment, but at � = 5.7 we

obtain 1.4(4) [9]. It seems likely then that the disagreement with experiment
arises from discretisation errors. At low � the predominant spin-dependent
potential is the long-range spin-orbit piece, the shorter range pieces are not
well resolved (compare [22] and [23], for example). A pure ~L � ~S potential
would give a value for r of 2 [20] (the pure tensor would give �0:4). In

potential model language the long-range ~L � ~S term has undue dominance in
our simulation. We also �nd that the overall size of the P spin splittings, set
by M(�2)�M(�0), is too small. For bb at � = 6.0 this splitting was on the

low side but in agreement with experiment within the error [3]. For bb at
� = 5.7 we obtain a result which is much too small [9]. Future calculations
will concentrate on correcting discretisation errors to see if the results for
charmonium at low � improve.

Another possible discretisation error shows up in the fact that the centre

of mass of the 3P states comes out above the 1P1. This happens both for

this calculation and that of the � spectrum [3], but in both cases at a level
within the expected systematic errors. One might expect, for example, that
the hyper�ne ~S � ~S interaction would contribute such a term to P states even

in the absence of a wavefunction at the origin (see equation (16)) if the B �eld

was smeared out over a plaquette as it is here. Experimental evidence so far
indicates that there is no such splitting [14], although it awaits con�rmation.

It seems likely that errors from the quenched approximation (and from
discretisation) are not so large for the P �ne structure as for the S hyper�ne

splitting because the latter is determined by very short range phenomena.
The hyper�ne splitting can be thought of as resulting from delta-function ~S1 �
~S2 potential at the origin (see equation (16)), where S states have signi�cant

wave function. The quenched approximation causes larger e�ects at short
distance scales because it appears, perturbatively, as an incorrect running

of the coupling constant �(R) down to the origin from some R which is the
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important separation for quark and antiquark in the 1P-1S splitting which

is used to set the scale. P states have no wavefunction at the origin and

in addition the short-range pieces of the relevant spin-dependent potentials

have longer range than the delta function hyper�ne potential. This should

mean that the P �ne structure can be determined accurately in a quenched

calculation by a systematic improvement on this calculation, without having

to unquench.

5 Conclusions

This represents a �rst calculation of the cc spectrum using NRQCD with

spin-dependent terms. We include the leading relativistic and discretisation
errors with tadpole-improved coe�cients. We �nd a value of the lattice
spacing from the 1P-1S splitting which is di�erent from that of the � on
the same con�gurations[9]. This is a clear indication of an e�ect from the
quenched approximation. Another e�ect seen in the � spectrum itself, the

di�erence in a�1 from the 2S-1S and 1P-1S splittings, is not visible here above
the statistical noise in the 2S state.

With tadpole-improvement, the spin splittings agree with experiment at
the level of the systematic error that we expect. The trend of these systematic
errors is the same as that for the � spectrum and we would expect that, on

including higher order terms, we could obtain better agreement. It seems
likely that the major errors at present are discretisation e�ects and future
calculations will correct for these. One very good feature of the cc spectrum
is that all the radial ground state S and P masses are known experimentally
and so they can be used to gauge the e�ect of systematic improvement.

Further calculations of the cc spectrum on lattices of di�erent lattice spacing
and on unquenched con�gurations would also provide useful checks of the

systematic errors. A value for �s could be extracted from the 1P-1S splitting
in the same way that it was done using the � calculation [6] and a comparison
with results from Wilson fermions [24, 25] made.

Calculations of the Bc spectrum combining b and c propagators on these

con�gurations will be reported shortly [9].
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