28 research outputs found

    Computing Time-Optimal Clearing Strategies for Pursuit-Evasion Problems with Linear Programming

    Get PDF
    This paper addresses and solves the problem of finding optimal clearing strategies for a team of robots in an environment given as a graph. The graph-clear model is used in which sweeping of locations, and their recontamination by intruders, is modelled over a surveillance graph. Optimization of strategies is carried out for shortest total travel distance and time taken by the robot team and under constraints of clearing costs of locations. The physical constraints of access and timely movements by the robots are also accounted for, as well as the ability of the robots to prevent recontamination of already cleared areas. The main result of the paper is that this complex problem can be reduced to a computable LP problem. To further reduce complexity, an algorithm is presented for the case when graph clear strategies are a priori available by using other methods, for instance by model checking

    P2X7 receptor: Death or life?

    Get PDF
    The P2X7 plasma membrane receptor is an intriguing molecule that is endowed with the ability to kill cells, as well as to activate many responses and even stimulate proliferation. Here, the authors give an overview on the multiplicity and complexity of P2X7-mediated responses, discussing recent information on this receptor. Particular attention has been paid to early and late signs of apoptosis and necrosis linked to activation of the receptor and to the emerging field of P2X7 function in carcinogenesis

    Plant antimicrobial peptides

    Get PDF
    corecore