
This is a repository copy of Computing Time-Optimal Clearing Strategies for 
Pursuit-Evasion Problems with Linear Programming.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/94359/

Version: Accepted Version

Proceedings Paper:
Qu, H., Kolling, A. and Veres, S.M. (2015) Computing Time-Optimal Clearing Strategies for
Pursuit-Evasion Problems with Linear Programming. In: Towards Autonomous Robotic 
Systems. Lecture Notes in Computer Science, 9287 . Springer Verlag , pp. 216-228. ISBN 
978-3-319-22415-2 

https://doi.org/10.1007/978-3-319-22416-9_26

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Computing time-optimal clearing strategies for

pursuit-evasion problems with linear

programming⋆

Hongyang Qu, Andreas Kolling, and Sandor M. Veres

Dept. of Automatic Control and Systems Engineering, University of Sheffield, UK
{h.qu,a.kolling,s.veres}@shef.ac.uk

Abstract. This paper addresses and solves the problem of finding op-
timal clearing strategies for a team of robots in an environment given as
a graph. The graph-clear model is used in which sweeping of locations,
and their recontamination by intruders, is modelled over a surveillance
graph. Optimization of strategies is carried out for shortest total travel
distance and time taken by the robot team and under constraints of
clearing costs of locations. The physical constraints of access and timely
movements by the robots are also accounted for, as well as the ability
of the robots to prevent recontamination of already cleared areas. The
main result of the paper is that this complex problem can be reduced to
a computable LP problem. To further reduce complexity, an algorithm is
presented for the case when graph clear strategies are a priori available
by using other methods, for instance by model checking.

1 Introduction

Search and pursuit-evasion problems appear in a variety of formulations in the
literature. A survey of methods can be found in [2] where taxonomies of ap-
proaches and assumptions based on attributes of searchers, targets and the envi-
ronments are reviewed. A large class of problems assumes that there is a graph-
based description, an “abstraction”, of the environment which models it into
locations, represented by vertices, and passages between locations, represented
by the edges of a graph. Once such an abstraction is available one can apply the
techniques developed in graph-searching for robotic search. Probably the first
related analysis of graph searching has been published in [12]. The searchers’
objective was to catch evaders along the edges the graph with the minimum
number of searchers. A large number of variants of graph searching problems
appeared which differed in their assumption on the mobility and cost models
of a team of search robots clearing edges and vertices of a graph. A review of
these is found in [3]. Many of the methods and results developed in the con-
text of graph-searching were primarily concerned with minimizing the number
of searchers rather than the distance or time travelled. In this paper we present

⋆ This work was supported by the EPSRC project EP/J011894/2.



2 Qu, Kolling, and Veres

a solution for minimizing time, in addition to the number of searchers, using an
linear programming formulation for a graph-based pursuit-evasion problem.

The recent framework of interest in this paper is the Graph-Clear(GC) model
[5, 7, 10] for pursuit-evasion problems with teams of robots. GC is particular
useful for search problems where multiple robots cooperate to detect intruders
in complex environments with limited sensing capabilities. Following the GC
approach, in this paper we consider the problem of searching a graph for an
unknown number of omniscient and smart targets moving with unbounded speed.
Such targets represent a worst-case scenario and are represented by the formal
concept of contamination [12], defined in Section 3. The searchers can execute
actions that clear contamination or block it from spreading through parts of the
environments. These actions have an associated cost that reflects the number of
robots needed to prevent targets from passing through undetected.

Linear programming (LP) techniques have previously been applied to robot
pursuit-evasion problems in [14] and [13]. In [14] the authors considered polygo-
nal environments partitioned into convex regions. From a region a searcher is able
to detect targets in all other visible regions. The resulting visibility relations be-
tween regions are considered in the LP formulation. Searchers can move between
adjacent regions at each time step but, to reduce the complexity, multiple pur-
suers cannot occupy the same region. A receding horizon approach was applied
in order to solve the LP formulation, albeit without guarantees for optimality.
Our work presented here is a continuation of [13] which considered the computa-
tion of strategies for Graph-Clear with the minimal number of searchers using an
LP formulation. In this paper we focus on computing time optimal strategies. In
contrast to [14] target detection in our scenario may require multiple searchers
and our environmental model is a graph with vertices that do not necessarily
represent convex regions and can exhibit more complex neighborhood relations.
In general, the problem of computing time optimal strategies is shown to be
harder than minimizing the number of searchers [1], e.g., it is already NP-hard
on star-shaped trees.

In the next section a formal description of surveillance graphs and of the GC
problem is provided. Section 3 develops the LP model to obtain minimal total
travel time of the robots to clear a graph in a physically feasible way. Section 4
deals with optimisation heuristics to reduce the computational complexity of the
optimal strategy. Section 5 applies the LP system to find the shortest execution
plan for a given clear strategy. Section 6 presents a computational example and
the last section concludes the paper.

2 Pursuit-Evasion problem

For our purposes we adopt the model called Graph-Clear introduced and formal-
ized in [10]. Therein the environment is given by a surveillance graph which is a
weighted graph G = (V,E,w) with an undirected graph with vertex set V , edge
set E, and w : V ∪ E → N

+ as a weight function. To model contamination and
how it is spreading the vertices and edges have an associated state with vertices



Comp. strat. for pursuit-evasion 3

either being clear or contaminated and edges either being clear, contaminated,
or blocked. These are abbreviated as R, C, and B for clear, contaminated, and
blocked, respectively. The state of the surveillance graph with n vertices and m

edges is then given by ν ∈ V(G) = {R, C}n × {R, C,B}m. As a shorthand, we
write ν(vi) and ν(ej) for the state of a particular vertex or edge. Contamina-
tion spreads on recontamination paths. These are paths of vertices and edges
on which no edge is blocked. Finally, searchers can execute actions which are
either a sweep on a vertex or a block on an edge. The executed actions on G

can be represented by a = {a1, . . . , an+m} ∈ {0, 1}n+m = A(G) where a 1 for an
associated vertex indicates a sweep and a 1 for an associated edge indicates a
block. The cost of an action a is given by c(a) =

∑n

i=1 aiw(vi)+
∑m

j=1 an+jw(ej),
representing the number of robots needed to execute all sweeps and blocks for
the action. The spread of contamination and the clearing of actions can now be
formalized via a transition function ζ, defined in [10] as follows:

Definition 1 (Transition function). Let G, V(G) and A(G) be defined as

above. The transition function ζ maps a state and an action into a new state:

ζ : V(G)×A(G) → V(G).

Given a ∈ A(G) and ν ∈ V(G), the new state ν′ is defined as follows:

1. if an+j = 1, 1 ≤ j ≤ m, then ν′(ej) = B
2. if ai = 1, 1 ≤ i ≤ n, then ν′(vi) = R
3. if νn+j = B, an+j = 0, 1 ≤ j ≤ m, and no recontamination path between ej

and x ∈ V ∪ E with ν(x) = C exists, then ν′n+j = R
4. if there exists a recontamination path between x ∈ V ∪E and y ∈ V ∪E with

ν(y) = C, then ν′(x) = C
5. ν′i = νi otherwise.

In colloquial terms the above describes the following rules stated in [10]:

1. edges where a block action is applied become blocked;
2. vertices where a sweep action is applied become clear;
3. blocked edges where a block action is not applied anymore become clear if

there is no recontamination path involving them;
4. vertices or edges for which a recontamination path towards a contaminated

vertex or edge exists become contaminated;
5. vertices or edges keep their previous state if none of the former cases apply.

A strategy to clear an initially fully contaminated surveillance graph G is
a sequence of actions S = {a1, a2, . . . , ak}. A strategy that is a solution to the
Graph-Clear problem has in addition a minimal cost, i.e. ag(S) = maxi=1...k c(ai)
is minimal. In [10] it has been shown that solving the Graph-Clear problem on
graphs is NP-hard and a polynomial time algorithms for trees was presented.
The algorithms has been applied to robotic search in [6, 8–11]. In [6] a method
to extract instances of the Graph-Clear problem from robot maps was presented,
validating the graph-based model for practical use.

The above definitions are best illustrated with the simple example shown
in Fig. 1. In this example vertices are associated with rooms, and edges with



4 Qu, Kolling, and Veres

connections between rooms. Edges between vertices are blocked by placing a
robot in the connection between rooms. All contaminated parts can hide an
intruders while cleared parts are guaranteed to be free of undetected intruders.
A room is cleared by using the specified number of robots to sweep through it.

v5

�
��
�
��

�
��

�
��

.

1

141 2

32

2 3

2

e3 e4

v1 v2 v3

e1 e2

e5

v4

�
��

Fig. 1. A simple example environment and a possible surveillance graph that can model
the search for a target. Numbers on vertices are clearing costs and numbers on edges
are blocking costs.

Much of the prior work in graph-searching by [3] focused on actions that are
executed by a single searcher, while the Graph-Clear model explicitly considers
actions that require multiple searchers. In this paper we consider connected
searching (sometimes also named as contiguous search) to be a search in which
the cleared edges and vertices always form a connected subgraph. In Graph-
Clear, it is obligatory to block every connected edge when sweeping a node.

Fig. 2 presents a surveillance strategy to solve the Graph-Clear problem
associated with the graph shown in Fig. 1. The first column displays the status
of the graph in the form of “ν(v1) · · · ν(v5) ν(e1) · · · ν(e5)”, the second the applied
action of the form “av1 · · · av5 ae1 · · · ae5”, and the third the cost. In the third
row an action sweeps two vertices at the same time. A final action removing all
blocks is executed in the end (with 0 cost). The cost of this strategy is 12, i.e.,
the maximum value read in the third column, and as such not optimal.

ν(G) a c(a)

CCCCC CCCCC 10000 10100 5
RCCCC BCBCC 00010 10101 6
RCCRC BCBCB 01100 11011 12
RRRRC BBRBB 00001 00011 7
RRRRR RRRBB 00000 00000 0
RRRRR RRRRR

Fig. 2. A Graph-Clear strategy.

3 Strategy with global minimal execution time

The previous section introduces an optimal clearing strategy that has minimal
cost. When such a strategy is implemented in practice, we have to decompose
it into execution paths for each individual robot. In general, there are many
ways to decompose a strategy. In this paper, we are interested in the executions



Comp. strat. for pursuit-evasion 5

that have the shortest execution time. For example, Fig. 4 shows an optimal
strategy for the model in Fig. 3. Fig. 6 illustrates an execution of the strategy

1

1 1

v
1

1

2

v
3v

2

e
1

e
2

Fig. 3. An example

ν(G) a c(a)

CCC CC 100 11 4
RCC BB 010 11 3
RRC BB 001 01 2
RRR RR

Fig. 4. A clearing strategy

ν(G) a c(a)

CCC CC 100 11 4
RCC BB 011 11 4
RRR RR

Fig. 5. A shortest strategy.

in Fig. 4 with 4 robots. In this figure, two robots are marked with solid discs
and the other two are marked by circles. Clearly, this graph does not represent
the shortest solution because step 2 can be skipped by asking the two robots
marked with solid discs in v1 in Fig. 6(b) to move with the other two at the
same time. This would make the system evolve from step 1 in Fig. 6(b) to step
3 directly in Fig. 6(d). Indeed, by skipping step 2, we change this strategy into

v
1

v
3v

2

e
1

e
2

(a) Initial location

v
1

v
3v

2

e
1

e
2

(b) Step 1

v
1

v
3v

2

e
1

e
2

(c) Step 2

v
1

v
3v

2

e
1

e
2

(d) Step 3

Fig. 6. An execution of a clearing strategy

a new strategy demonstrated in Fig. 5.
In this section, we propose a linear programming system to compute a clear-

ing strategy that has the minimal cost and its execution plan for each robot with
minimal execution time. We first present the general constraints that can be ap-
plied in a broader context, and second the specific constraints for computing the
shortest execution path. We assume that all robots move at the same speed, and
therefore, execution time in one step can be measured by the maximum travel
distance during the step. We also assume that the distance between a vertex and
an adjacent edge is constant.

3.1 General constraints

As stated in the previous section, a graph with n vertices and m edges can be
cleared in n steps, each of which clears one vertex. Suppose that at least k robots
are needed to clear a graph1. In each step, a robot can be located in one of the
n+m places. Let l = n+m be the number of possible locations. We also assume
that initially the robot has been placed into a vertex or edge. Therefore, we need
l · (n + 1) binary LP variables X1, . . . , Xl·(n+1) to encode all possible locations
of each robot in every step and the initial locations. We assume that the edges

1 The minimal number of robots can be calculated using the algorithm in [10] or [13].



6 Qu, Kolling, and Veres

are numbered after vertices, i.e., from n + 1 to n +m, and that the robots are
numbered from 0 to k − 1. The initial location of robot j (0 ≤ j ≤ k − 1) is
constrained by the following equation:

Xj·l+1 + · · ·+X(j+1)·l = 1. (1)

As each variable is binary, the above equation captures the fact that the robot
locates exactly in one place.

The constraint for the location of robot j at the i-th step (1 ≤ i ≤ n) is
formulated as follows.

Xi·k·l+j·l+1 + · · ·+Xi·k·l+(j+1)·l = 1. (2)

The expression i ·k · l above indicates the total number of LP variables from step
0 to step i− 1, where the initial location is seen as step 0. We call the variables
appearing in Equations (1) and (2) location variables. As n steps are required to
clear the graph, there are

∆1 = (n+ 1) · k · l (3)

location variables in the LP system for k robots.

The following constraint models the travel distance of a robot moving in a
step. For a robot j and two locations p and q (1 ≤ p, q ≤ l), we generate a binary
LP variable Xf(p,q) to represent the possibility that the robot moves from p to
q at the i-th step (1 ≤ i ≤ n).

2 ·Xf(p,q) −X(i−1)·k·l+j·l+p −Xi·k·l+j·l+q ≤ 0, (4)

where

f(p, q) = ∆1 + (i− 1) · k · l2 + j · l2 + (p− 1) · l + q. (5)

In this constraint, X(i−1)·k·l+j·l+p encodes the location of the robot j at the
(i− 1)-th step and Xi·k·l+j·l+q its location at the i-th step. When both variables
are set to one, which means that indeed the robot moves from p to q at the
i-th step, Xf(p,q), a binary move variable, can be set to one without violation of
Equation (4). In other cases, i.e., at least one location variable is zero, Xf(p,q)

has to be set to zero, indicating that this is not an actual move. For each robot
and each step, there are l2 possible moves, and hence, we need l2 move variables.
The following constraint requires that exactly one of the l2 move variables is set
to one representing the actual move.∑

1≤p,q≤l

Xf(p,q) = 1. (6)

The move variables constitute the majority of total variables used in the LP
system: there are

∆2 = n · k · l2 (7)

move variables.

Now we introduce distance variables of integer type, one for each step. Let
Di be the distance variable for the i-th step (1 ≤ i ≤ n). As each robot has one
move variable set to one, the following constraint states that Di is no less than
the maximum distance a robot can move in one step:∧

0≤j<k

{(
∑

1≤p,q≤l

dp,q ·Xf(p,q))−Di ≤ 0}, (8)



Comp. strat. for pursuit-evasion 7

where dp,q is the minimum travel distance between p and q. Clearly, there are

∆3 = n (9)

distance variables. The objective function is to minimise the sum of the distance
variables, i.e., ∑

1≤i≤n

Di. (10)

3.2 Constraints for Graph-Clear strategies

In this subsection, we model the constraints required by Graph-Clear strategies.
The first constraint is to block an edge. Let cer be the cost of edge er (1 ≤ r ≤ m).
At the i-th step, edge er has a binary edge blocking variable Yi·m+r to represent
whether it is being blocked at this step. Equation (11) enforces that the edge
blocking variable cannot be set to one if the number of robots staying in the
edge is fewer than the cost of blocking the edge.

cer · Yi·m+r −
∑

0≤j<k

Xi·k·l+j·l+n+r ≤ 0. (11)

There are in total

∆4 = n ·m (12)

of edge blocking variables. Equation (13) guarantees that the edge blocking vari-
able is set to one as far as the number of robots in the edge reaches the required
number for blocking the edge.

k−1∑

j=0

Xi·k·l+j·l+n+r + (cer − 1− k) · Yi·m+r ≤ cer − 1. (13)

The correctness of Equation (13) can be proved by contradiction. Suppose the
number of robots in the edge is large enough to block the edge and the edge
blocking variable is set to zero. Then, Equation (13) is transformed into

k−1∑

j=0

Xi·k·l+j·l+n+r ≤ cer − 1,

which is clearly unsatisfiable. Therefore, Yi·m+r has to be set to 1 and Equa-
tion (13) becomes

k−1∑

j=0

Xi·k·l+j·l+n+r ≤ k,

which is tautology.

Clearing a vertex at the i-th step can be modelled in a similar way. Let cvr
be the cost of clearing vertex vr (1 ≤ r ≤ n), and Zi·n+r the binary vertex

clearing variable. Equations (14) and (15) formalise the constraint. In addition,
all adjacent edges to vr have to be blocked at the same time. For each adjacent
edge es, Equation (16) requests es to be blocked.

cvr
· Zi·n+r −

∑

0≤j<k

Xi·k·l+j·l+r ≤ 0. (14)



8 Qu, Kolling, and Veres

k−1∑

j=0

Xi·k·l+j·l+r + (cvr
− 1− k) · Zi·n+r ≤ cvr

− 1. (15)

Zi·n+r − Yi·m+s ≤ 0. (16)

There are in total

∆5 = n2 (17)

of vertex clearing variables.

A Graph-Clear strategy clears one vertex at each step, which can be expressed
as follows.

n∑

r=1

Zi·n+r ≥ 1. (18)

The above equation states that at the i-th step, there exists a node r (1 ≤ r ≤ n)
that is being cleared. When a Graph-Clear strategy is executed completely, we
would expect that all vertices have been cleared, which is expressed by the
following equation on all vertices: for each node r, there exists a step i (1 ≤ i ≤ n)
at which r is cleared.

n∑

i=1

Zi·n+r ≥ 1. (19)

The strategy also requires that the node being cleared at the i-th step (i > 1)
should be adjacent to a node that has been cleared at a previous step. Let
Vr = {r1, · · · , rt} be the set of indices of adjacent nodes for node vr. We have

Zi·n+r −

i−1∑

j=1

∑

p∈Vr

Zj·n+p ≤ 0. (20)

The correctness of Equation (20) is obvious: Zi·n+r cannot be set to 1 if none
of Zj·n+p variables is 1, representing no adjacent nodes in Vr has been cleared
before. Similarly, an edge er cannot be blocked at the i-th step until one of its
adjacent vertices has been swept before or being swept at the same step. Let
Er = {r1, r2} be the adjacent vertices of er. We have

Yi·m+r −

i∑

j=1

∑

p∈Er

Zj·n+p ≤ 0. (21)

To prevent recontamination, an edge er that is blocked for sweeping a vertex
has to be continuously blocked until both adjacent vertices have been swept. Let
vp be an adjacent vertex of er. This constraint is characterised by the equation:

Y(i−1)·m+r −

i∑

j=1

Zj·n+p − Yi·m+r ≤ 0. (22)

The correctness of Equation (22) is straightforward: at the i-th step, Yi·m+r has
to be set to 1, meaning that er is being blocked at this step, if it is blocked at
the previous step (Y(i−1)·m+r = 1) and vertex vp has not been swept yet (all Z
variables are zero). If one of the Z variable is 1, then there is no constraint on
Yi·m+r enforced by vp.



Comp. strat. for pursuit-evasion 9

Complexity The total number of LP variables is

∆ = ∆1 +∆2 +∆3 +∆4 +∆5, (23)

where ∆2 is in the dominant position, which means that the number of LP
variables is proportional to O(k × n × (n + m)2). This suggests that the LP
program for a large surveillance graph can easily be beyond the capacity of the
state-of-the-art LP solvers.

4 Optimisation heuristics

Equation (1) allows the robots to be scattered all over the graph when they start
to clear the graph. A reasonable assumption in practice is to place them in a
vertex initially. Therefore Equation (24) can be modified to exclude edges.

Xj·l+1 + · · ·+Xj·l+n = 1. (24)

Similarly, we can assume all robots initially gather in an edge if requested.
After taking Equation (24), we could make another assumption that all robots

start from the same location. This can be modelled by the following constraints:
for all vertex 1 ≤ i ≤ n and all robots 0 < j < k, we have

Xi −Xj·l+i = 0. (25)

The equations in this category set all variables corresponding to the same initial
location to the same value by letting all robots from 1 to k− 1 stay in the same
location of robot 0.

To speed up the search for an optimal clear strategy with shortest execution
time, it is essential to get a tight upper-bound for each distance variables. If all
robots are initially positioned in the same vertex, then it is reasonable to assume
they would sweep the initial vertex first. Therefore, the shortest time to execute
the first step is the same as the time for some robots moving to the adjacent
edges to block. Constraints specified in Equations (6) and (8) can be simplified
by removing impossible moves between vertices and edges. For example, suppose
that robots initially gather at vertex v3 in Fig. 1. To sweep v3, there is no need
to allow robots to move to vertex v2 and beyond. Hence, the move variables for
those unrealistic moves can be removed from Equations (6) and (8).

For other steps, it is also very helpful if we can estimate the maximum dis-
tance that a robot needs to move. For the example in Fig. 1, we can get an
optimal execution even if we do not allow a robot to move across three edges
if it starts from an edge, or across three vertices if it starts from a vertex. For
example, a robot cannot move from e2 to e3 or from v2 to v4 in one step.

5 Executing a predefined strategy with minimal

execution time

The LP system defined in Section 3 is still very hard to solve even if we apply
the heuristics in Section 4. In this section, we apply the LP system to find a
shortest execution plan for a given clearing strategy. The strategy specifies the



10 Qu, Kolling, and Veres

vertex to sweep and edges to block at each step, and thus, greatly reduces the
search space. To achieve this, the constraints listed in Section 3.2 are not needed
any more. Instead, we add the following constraints.

As in the previous section, we assume that initially the robots stay in the
vertex that is swept at the first step. For each edge er being blocked at the i-th
step, we generate the following inequality.

n∑

j=1

Xi·n·l+j·l+n+r ≥ cer . (26)

Similarly, for vertex vr being swept at the i-th step, we have
n∑

j=1

Xi·n·l+j·l+r ≥ cvr
. (27)

The intuition in these equations is that the number of robots in er (vr) should
exceed the cost of blocking er (sweeping vr).

Note that the LP system does not impose any constraints on edges that are
in the clear, i.e., R, state. A clear edge may still be blocked during the execution
when necessary for saving execution time.

Complexity The extra constraints in Equations (26) and (27) do not introduce
new LP variables. Thus, the total number of LP variables for computing the
execution of a predefined strategy is

∆ = ∆1 +∆2 +∆3. (28)

This suggests that the complexity for finding an optimal execution plan for a
given strategy is in the same level of that for computing a global optimal exe-
cution plan. In practice, however, this kind of LP programs can be solved much
faster than that in Section 3 due to fewer LP variables and more constraints.

6 Experiment

The LP system described in this paper can be automatically generated by pro-
viding the adjacency matrix of the graph, and the distance matrix which records
the minimal travel time/distance between any two locations in the graph. The
number of robots, i.e., the cost of clearing a graph, also needs to be specified.
In [13], we proposed to apply model checking techniques to compute the minimal
cost and generating a corresponding strategy. Fig. 7 shows such a strategy.

Our prototype implementation takes this example strategy and generates
the LP system described in Section 5, which is then solved by the LP solver
Gurobi Optimizer [4]. We assume that the travel distance between a vertex and
an adjacent edge is one and takes one unit of time to move. In a computer with
dual Intel Xeon E5-2643 v2 processors and 384GB RAM, it took 112 seconds to
find an optimal execution with the execution time 9 units of time, which is the
minimal execution time for this strategy. The detail of the execution is illustrated
in Fig. 7, where we list the location of each robot at every step. Note that the



Comp. strat. for pursuit-evasion 11

location at step 0 is the initial location. The last column gives the number of
time units needed for every step.

ν(G) a c(a)

CCCCC CCCCC 00001 00011 7
CCCCR CCCBB 00010 00111 8
CCCRR CCBBB 10000 10110 8
RCCRR BCBBR 01000 11010 9
RRCRR BBRBR 00100 01000 3
RRRRR RBRRR

Fig. 7. A Graph-Clear Strategy.

Step
Robot

Time
1 2 3 4 5 6 7 8 9

0 v5 v5 v5 v5 v5 v5 v5 v5 v5

1 v5 e5 v5 e5 e4 e4 e4 v5 e5 1

2 v4 e3 e4 e3 e4 e1 e4 e5 v4 2

3 e3 v1 e4 v1 e4 e1 e4 v5 e3 1

4 v2 v2 e4 e1 e4 e2 v2 e4 v2 3

5 e2 v2 e4 e1 e4 v3 e2 e4 v3 2

Fig. 8. An execution

However, if we use the LP system defined in Section 3 and the heuristics in
Section 4, then the solver managed to find an execution plan with 8 time units.
The locations at each step is listed in Fig. 9 and the corresponding strategy
is shown in Fig. 10. We can see that vertices v1 and v4 can be cleared in one
step, which makes the fifth step redundant. However, the time for solving the
LP system was increased to 60143 seconds.

Step
Robot

Time
1 2 3 4 5 6 7 8 9

0 v3 v3 v3 v3 v3 v3 v3 v3 v3

1 e2 v3 e2 v3 e2 e2 e2 e2 e2 1

2 e4 e2 e1 v2 v2 e4 e4 v2 v2 2

3 e5 e4 e4 v5 e4 v5 v5 e1 v5 2

4 v4 v4 v1 e1 v1 v5 e5 e3 e3 3

Fig. 9. An optimal execution.

ν(G) a c(a)

CCCCC CCCCC 00100 01000 3
CCRCC CBCCC 01000 11010 9
CRRCC BBCBC 00001 10011 8
CRRCR BRCBB 10010 10101 8
RRRRR BRBRB

Fig. 10. A Graph-Clear Strategy.

Discussion. During at any point of the process of solving the LP system, Gurobi
Optimizer maintains an upper bound and a lower bound (also called best bound)
for the value of the objective function. The upper bound is the value obtained
by the temporary best solution, called incumbent solution, up to that point.
The solving process terminates when the upper bound matches the lower bound.
However, this process can be interrupted at any point and the incumbent solution
is returned. The incumbent solution may not be an optimal solution, but in this
example, the incumbent solution found at 110 seconds represents an execution
plan with 8 time units, which is the upper bound. It means that this solution
is an optimal solution, although the best bound at that point is lower than the
upper bound. Therefore, the solving process can be stopped at any point after the
upper bound reaches 8. The solving process for a given strategy can be stopped
in the same way. When the global minimal value of the objective function is not
known, we can use the following two steps to acquire an acceptable solution.
First, we compute a strategy with a minimal number of pursuers and obtain the
minimal value for the objective function of this strategy. Second, we run the LP



12 Qu, Kolling, and Veres

solver to solve the LP system for the global optimal solution and terminate the
solving process at any point when a better strategy than the known strategy is
found.

7 Conclusion

This paper solves the optimal design of movements by robots in an enviroment
modelled by a surveillance graph under the constraints of robot movements and
resources. A method to find a shortest execution plan for a given clear strategy is
also presented. It is assumed that the moving distance between a vertex and an
adjacent edge is constant. As this assumption may not hold in practice when a
vertex represents a fairly large area, further work can be carried out to improve
the modelling approach taken in this paper.

References

1. R. Borie, C. Tovey, and S. Koenig. Algorithms and complexity results for pursuit-
evasion problems. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 59–66, 2009.

2. T.H. Chung, G.A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile
robotics. Autonomous Robots, 31(4):299–316, 2011.

3. F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science, 399(3):236–245, 2008.

4. Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2014.
5. A. Kolling and S. Carpin. The graph-clear problem: definition, theoretical proper-

ties and its connections to multirobot aided surveillance. Proc. of IEEE/RSJ Intl.
Conf. On Intelligent Robots and Systems, pages 1003–1008, 2007.

6. A. Kolling and S. Carpin. Extracting surveillance graphs from robot maps. In
Proceedings of IROS’08, pages 2323–2328, 2008.

7. A. Kolling and S. Carpin. Multi-robot surveillance: an improved algorithm for the
graph-clear problem. Proc. IEEE Int. Conf. on Robotics and Automation, pages
2360–2365, 2008.

8. A. Kolling and S. Carpin. Surveillance strategies for target detection with sweep
lines. In Proceedings of IROS’09, pages 5821–5827, 2009.

9. A. Kolling and S. Carpin. Multi-robot pursuit-evasion without maps. In Proceed-
ings of ICRA’10, pages 3045–3051, 2010.

10. A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams. IEEE T.
Robot., 26(1):32–47, 2010.

11. A. Kolling and A. Kleiner. Multi-uav motion planning for guaranteed search. In
Proceedings of AAMAS’13, pages 79–86, 2013.

12. T.D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors,
Theory and Applications of Graphs, volume 642, pages 426–441. Springer, 1976.

13. H. Qu, A. Kolling, and S. M. Veres. Formulating robot pursuit-evasion strategies
by model checking. In Proceedings of IFAC’14, pages 3048–3055, 2014.

14. J. Thunberg and P. Ögren. A mixed integer linear programming approach to
pursuit evasion problems with optional connectivity constraints. Auton. Robots,
31(4):333–343, 2011.


