27 research outputs found

    A Parameterization of the Microphysical Processes Forming Many Types of Winter Precipitation

    Get PDF
    Several types of precipitation, such as freezing rain, ice pellets, and wet snow, are commonly observed during winter storms. The objective of this study is to better understand the formation of these winter precipitation types. To address this issue, detailed melting and refreezing of precipitation was added onto an existing bulk microphysics scheme. These modifications allow the formation of mixed-phase particles and these particles in turn lead to, or affect, the formation of many of the other types of precipitation. The precipitation type characteristics, such as the mass content, liquid fraction, and threshold diameters formed during a storm over St John’s, Newfoundland, Canada, are studied and compared with observations. Many of these features were reproduced by the model. Sensitivity experiments with the model were carried out to examine the dependence of precipitation characteristics in this event on thresholds of particle evolution in the new parameterization

    Home for a White Season : Measuring precipitation in the Saint John River Valley

    Get PDF
    Canada First Research Excellence FundNon-Peer ReviewedPersonal account of a scientist's engagement with government agencies and local citizens to produce new understanding of rain and snow patterns in New Brunswick's Saint John River valley

    Erratum to: Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary condition

    Get PDF
    The capture of the public servant in a criminal investigation is subject to special rules and different to those for the capture of individuals, since the imprisonment of an official can affect continuity, speed and efficiency of the civil service, an equally important constitutional value. Therefore, as a rule capturing the public servant must be preceded by a request for suspensión by the prosecution, and to proceed without suspension, the prosecutor in his providence should motivate the reasons and arguments why not affects the normal functioning of public administration. The lack of motivation for this essential aspect, affords a fact that becomes appropriate procedural habeas corpus as an effective mechanism guarantees of personal freedom. Similarly appropriate habeas corpus when catching public server ordered by a prosecutor without functional competence to advance research, by setting a path made by organic defect.La captura del servidor público investigado en un proceso penal está sujeta a reglas especiales y diversas a las previstas para la captura de los particulares, por cuanto la privación de la libertad de un funcionario puede afectar la continuidad, celeridad y eficacia de la función pública, como un valor constitucional igualmente relevante. Por tal motivo, como regla general,la captura del servidor público debe estar precedida de la solicitud de suspensión por parte de la Fiscalía General de la Nación y para que proceda sin suspensión previa, el fiscal debe consignar en su providencia las razones y argumentos por los cuales no se afecta el normal funcionamiento de la administración pública. La ausencia de motivación de este aspecto esencial constituye una vía de hecho procedimental que torna procedente la acción de habeas corpus, como mecanismo efectivo de garantía de la libertad personal. De igual manera, procede el habeas corpus cuando la captura del servidor público la ordena un fiscal sin competencia funcional para adelantar la investigación, por configuración de una vía de hecho por defecto orgánico

    Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions

    Get PDF
    In regional climate modelling, it is well known that domains should be neither too large to avoid a large departure from the driving data, nor too small to provide a sufficient distance from the lateral inflow boundary to allow the full development of the small-scale (SS) features permitted by the finer resolution. Although most practitioners of dynamical downscaling are well aware that the jump of resolution between the lateral boundary condition (LBC) driving data and the nested regional climate model affects the simulated climate, this issue has not been fully investigated. In principle, as the jump of resolution becomes larger, the region of interest in the limited-area domain should be located further away from the lateral inflow boundary to allow the full development of the SS features. A careless choice of domain might result in a suboptimal use of the full finer resolution potential to develop fine-scale features. To address this issue, regional climate model (RCM) simulations using various resolution driving data are compared following the perfect-prognostic Big-Brother protocol. Several experiments were carried out to evaluate the width of the spin-up region (i.e. the distance between the lateral inflow boundary and the domain of interest required for the full development of SS transient eddies) as a function of the RCM and LBC resolutions, as well as the resolution jump. The spin-up distance turns out to be a function of the LBC resolution only, independent of the RCM resolution. When varying the RCM resolution for a given resolution jump, it is found that the spin-up distance corresponds to a fixed number of RCM grid points that is a function of resolution jump only. These findings can serve a useful purpose to guide the choice of domain and RCM configuration for an optimal development of the small scales allowed by the increased resolution of the nested model

    The Collection Efficiency of Shielded and Unshielded Precipitation Gauges. Part II: Modeling Particle Trajectories

    Get PDF
    The use of windshields to reduce the impact of wind on snow measurements is common. This paper investigates the catching performance of shielded and unshielded gauges using numerical simulations. In Part II, the role of the windshield and gauge aerodynamics, as well as the varying flow field due to the turbulence generated by the shield–gauge configuration, in reducing the catch efficiency is investigated. This builds on the computational fluid dynamics results obtained in Part I, where the airflow patterns in the proximity of an unshielded and single Alter shielded Geonor T-200B gauge are obtained using both time-independent [Reynolds-averaged Navier–Stokes (RANS)] and time-dependent [large-eddy simulation (LES)] approaches. A Lagrangian trajectory model is used to track different types of snowflakes (wet and dry snow) and to assess the variation of the resulting gauge catching performance with the wind speed. The collection efficiency obtained with the LES approach is generally lower than the one obtained with the RANS approach. This is because of the impact of the LES-resolved turbulence above the gauge orifice rim. The comparison between the collection efficiency values obtained in case of shielded and unshielded gauge validates the choice of installing a single Alter shield in a windy environment. However, time-dependent simulations show that the propagating turbulent structures produced by the aerodynamic response of the upwind single Alter blades have an impact on the collection efficiency. Comparison with field observations provides the validation background for the model results

    Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection Efficiency of the Double Fence Intercomparison Reference

    Get PDF
    The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge–shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall

    An Improved Trajectory Model to Evaluate the Collection Performance of Snow Gauges

    Get PDF
    Recent studies have used numerical models to estimate the collection efficiency\ud of solid precipitation gauges when exposed to the wind, in both\ud shielded and unshielded configurations. The models used computational fluid\ud dynamics (CFD) simulations of the airflow pattern generated by the aerodynamic\ud response to the gauge/shield geometry. These are used as initial conditions\ud to perform Lagrangian tracking of solid precipitation particles. Validation\ud of the results against field observations yielded similarities in the overall\ud behavior, but the model output only approximately reproduced the dependence\ud of the experimental collection efficiency on wind speed. This paper\ud presents an improved snowflake trajectory modeling scheme due to the inclusion\ud of a dynamically-determined drag coefficient. The drag coefficient\ud was estimated using the local Reynolds number as derived from CFD simulations\ud within a time-independent Reynolds Averaged Navier-Stokes (RANS)\ud approach. The proposed dynamic model greatly improves the consistency of\ud results with the field observations recently obtained at the Marshall, CO Winter\ud Precipitation Testbed

    A Case Study of Processes Impacting Precipitation Phase and Intensity during the Vancouver 2010 Winter Olympics

    Get PDF
    Accurate forecasting of precipitation phase and intensity was critical information for many of the Olympic venue managers during the Vancouver 2010 Olympic and Paralympic Winter Games. Precipitation forecasting was complicated because of the complex terrain and warm coastal weather conditions in the Whistler area of British Columbia, Canada. The goal of this study is to analyze the processes impacting precipitation phase and intensity during a winter weather storm associated with rain and snow over complex terrain. The storm occurred during the second day of the Olympics when the downhill ski event was scheduled. At 0000 UTC 14 February, 2 h after the onset of precipitation, a rapid cooling was observed at the surface instrumentation sites. Precipitation was reported for 8 h, which coincided with the creation of a nearly 0°C isothermal layer, as well as a shift of the valley flow from up valley to down valley. Widespread snow was reported on Whistler Mountain with periods of rain at the mountain base despite the expectation derived from synoptic-scale models (15-km grid spacing) that the strong warm advection would maintain temperatures above freezing. Various model predictions are compared with observations, and the processes influencing the temperature, wind, and precipitation types are discussed. Overall, this case study provided a well-observed scenario of winter storms associated with rain and snow over complex terrain

    Storms and Precipitation Across the continental Divide Experiment (SPADE)

    Get PDF
    Canada First Research Excellence Fund’s Global Water Futures programme (GWF), NSERC Discovery Grants (Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, and Ronald E. Stewart), the Canada Research Chairs Program (Julie M. Thériault, John W. Pomeroy), UNBC (Selina Mitchell), NSERC CGS-M, and a FRQNT fellowship (Aurélie Desroches-Lapointe)Peer ReviewedThe Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields

    Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019

    Get PDF
    Global Water Futures Storms and Precipitation Across the continental Divide Experiment (grant no. 418474-1234)Peer ReviewedThe continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076ma.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580ma.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087ma.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event
    corecore