18 research outputs found

    Markers of neutrophil activation and neutrophil extracellular traps in diagnosing patients with acute venous thromboembolism: A feasibility study based on two VTE cohorts

    Get PDF
    Background: Venous thromboembolism (VTE) diagnosis would greatly benefit from the identification of novel biomarkers to complement D-dimer, a marker limited by low specificity. Neutrophil extracellular traps (NETs) have been shown to promote thrombosis and could hypothetically be used for diagnosis of acute VTE. Objectives: To assess the levels of specific markers of neutrophil activation and NETs and compare their diagnostic accuracy to D-dimer. Methods: We measured plasma levels of neutrophil activation marker neutrophil elastase (NE), the NET marker nucleosomal citrullinated histone H3 (H3Cit-DNA) and cell-free DNA in patients (n = 294) with suspected VTE (pulmonary embolism and deep vein thrombosis) as well as healthy controls (n = 30). A total of 112 VTE positive and 182 VTE negative patients from two prospective cohort studies were included. Results: Higher levels of H3Cit-DNA and NE, but not cell-free DNA, were associated with VTE. Area under receiver operating curves (AUC) were 0.90 and 0.93 for D-dimer, 0.65 and 0.68 for NE and 0.60 and 0.67 for H3Cit-DNA in the respective cohorts. Adding NE and H3Cit-DNA to a D-dimer based risk model did not improve AUC. Conclusions: Our study demonstrates the presence of neutrophil activation and NET formation in VTE using specific markers. However, the addition of NE or H3Cit-DNA to D-dimer did not improve the discrimination compared to D-dimer alone. This study provides information on the feasibility of using markers of NETs as diagnostic tools in acute VTE. Based on our findings, we believe the potential of these markers are limited in this setting

    Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors

    Get PDF
    Pancreatic cancer is associated with a high incidence of venous thromboembolism. Neutrophils have been shown to contribute to thrombosis in part by releasing neutrophil extracellular traps (NET). A recent study showed that increased plasma levels of the NET biomarker, citrullinated histone H3 (H3Cit), are associated with venous thromboembolism in patients with pancreatic and lung cancer but not in those with other types of cancer, including breast cancer. In this study, we examined the contribution of neutrophils and NET to venous thrombosis in nude mice bearing human pancreatic tumors. We found that tumor-bearing mice had increased circulating neutrophil counts and levels of granulocyte-colony stimulating factor, neutrophil elastase, H3Cit and cell-free DNA compared with controls. In addition, thrombi from tumor-bearing mice contained increased levels of the neutrophil marker Ly6G, as well as higher levels of H3Cit and cell-free DNA. Thrombi from tumor-bearing mice also had denser fibrin with thinner fibers consistent with increased thrombin generation. Importantly, either neutrophil depletion or administration of DNase I reduced the thrombus size in tumor-bearing but not in control mice. Our results, together with clinical data, suggest that neutrophils and NET contribute to venous thrombosis in patients with pancreatic cancer

    Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer

    Get PDF
    Citrullinated histone H3 (H3Cit) is a central player in the neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs). NETs have been shown to elicit harmful effects on the host, and were recently proposed to promote tumor progression and spread. Here we report significant elevations of plasma H3Cit in patients with advanced cancer compared with age-matched healthy individuals. These elevations were specific to cancer patients as no increase was observed in severely ill and hospitalized patients with a higher non-malignant comorbidity. The analysis of neutrophils from cancer patients showed a higher proportion of neutrophils positive for intracellular H3Cit compared to severely ill patients. Moreover, the presence of plasma H3Cit in cancer patients strongly correlated with neutrophil activation markers neutrophil elastase (NE) and myeloperoxidase (MPO), and the inflammatory cytokines interleukin-6 and -8, known to induce NETosis. In addition, we show that high levels of circulating H3Cit strongly predicted poor clinical outcome in our cohort of cancer patients with a 2-fold increased risk for short-term mortality. Our results also corroborate the association of NE, interleukin-6 and -8 with poor clinical outcome. Taken together, our results are the first to unveil H3Cit as a potential diagnostic and prognostic blood marker associated with an exacerbated inflammatory response in patients with advanced cancer

    Neutrophil Extracellular Traps in Breast Cancer and Beyond: Current Perspectives on NET Stimuli, Thrombosis and Metastasis, and Clinical Utility for Diagnosis and Treatment

    Get PDF
    Abstract The formation of neutrophil extracellular traps (NETs), known as NETosis, was first observed as a novel immune response to bacterial infection, but has since been found to occur abnormally in a variety of other inflammatory disease states including cancer. Breast cancer is the most commonly diagnosed malignancy in women. In breast cancer, NETosis has been linked to increased disease progression, metastasis, and complications such as venous thromboembolism. NET-targeted therapies have shown success in preclinical cancer models and may prove valuable clinical targets in slowing or halting tumor progression in breast cancer patients. We will briefly outline the mechanisms by which NETs may form in the tumor microenvironment and circulation, including the crosstalk between neutrophils, tumor cells, endothelial cells, and platelets as well as the role of cancer-associated extracellular vesicles in modulating neutrophil behavior and NET extrusion. The prognostic implications of cancer-associated NETosis will be explored in addition to development of novel therapeutics aimed at targeting NET interactions to improve outcomes in patients with breast cancer

    Neutrophils can Promote Clotting via FXI and Impact Clot Structure via Neutrophil Extracellular Traps in a Distinctive Manner in vitro

    Get PDF
    Neutrophils and neutrophil extracellular traps (NETs) have been shown to be involved in coagulation. However, the interactions between neutrophils or NETs and fibrin(ogen) in clots, and the mechanisms behind these interactions are not yet fully understood. In this in vitro study, the role of neutrophils or NETs on clot structure, formation and dissolution was studied with a combination of confocal microscopy, turbidity and permeation experiments. Factor (F)XII, FXI and FVII-deficient plasmas were used to investigate which factors may be involved in the procoagulant effects. We found both neutrophils and NETs promote clotting in plasma without the addition of other coagulation triggers, but not in purified fibrinogen, indicating that other factors mediate the interaction. The procoagulant effects of neutrophils and NETs were also observed in FXII- and FVII-deficient plasma. In FXI-deficient plasma, only the procoagulant effects of NETs were observed, but not of neutrophils. NETs increased the density of clots, particularly in the vicinity of the NETs, while neutrophils-induced clots were less stable and more porous. In conclusion, NETs accelerate clotting and contribute to the formation of a denser, more lysis resistant clot architecture. Neutrophils, or their released mediators, may induce clotting in a different manner to NETs, mediated by FXI

    Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress.

    No full text
    Cancer is associated with systemic pathologies that contribute to mortality, such as thrombosis and distant organ failure. The aim of this study was to investigate the potential role of neutrophil extracellular traps (NETs) in myocardial inflammation and tissue damage in treatment-naïve individuals with cancer. Mice with mammary carcinoma (MMTV-PyMT) had increased plasma levels of NETs measured as H3Cit-DNA complexes, paralleled with elevated coagulation, compared to healthy littermates. MMTV-PyMT mice displayed upregulation of pro-inflammatory markers in the heart, myocardial hypertrophy and elevated cardiac disease biomarkers in the blood, but not echocardiographic heart failure. Moreover, increased endothelial proliferation was observed in hearts from tumor-bearing mice. Removal of NETs by DNase I treatment suppressed the myocardial inflammation, expression of cardiac disease biomarkers and endothelial proliferation. Compared to a healthy control group, treatment-naïve cancer patients with different malignant disorders had increased NET formation, which correlated to plasma levels of the inflammatory marker CRP and the cardiac disease biomarkers NT-proBNP and sTNFR1, in agreement with the mouse data. Altogether, our data indicate that NETs contribute to inflammation and myocardial stress during malignancy. These findings suggest NETs as potential therapeutic targets to prevent cardiac inflammation and dysfunction in cancer patients
    corecore