38 research outputs found

    Detection of Adriamycinā€“DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations

    Get PDF
    Limited sensitivity of existing assays has prevented investigation of whether Adriamycinā€“DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycinā€“DNA adducts/104 bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycinā€“DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [14C]Adriamycinā€“DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycinā€“DNA adducts at clinically-relevant Adriamycin concentrations. [14C]Adriamycin treatment (25 nM) resulted in 4.4 Ā± 1.0 adducts/107 bp (āˆ¼1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycinā€“DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycinā€“DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues

    Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors.

    Get PDF
    Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro

    Natural compounds as therapeutic agents: The case of human topoisomerase ib

    Get PDF
    Natural products are widely used as source for drugs development. An interesting example is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme involved in many cellular processes where several topological problems occur due the formation of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing the DNA cleaving and religating a single DNA strand, represents an important target in anticancer therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as possible new drugs. This review summarizes the natural products that target human topoisomerase IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural compounds and their derivatives that are in clinical trial are also commented on

    Mitoxantrone, pixantrone, and mitoxantrone (2-hydroxyethyl)piperazine are toll-like receptor 4 antagonists, inhibit NF-ĪŗB activation, and decrease TNF-alpha secretion in primary microglia

    Get PDF
    Toll-like receptor 4 (TLR4) recognizes various endogenous and microbial ligands and is an essential part in the innate immune system. TLR4 signaling initiates transcription factor NF-ĪŗB and production of proinflammatory cytokines. TLR4 contributes to the development or progression of various diseases including stroke, neuropathic pain, multiple sclerosis, rheumatoid arthritis and cancer, and better therapeutics are currently sought for these conditions. In this study, a library of 140 000 compounds was virtually screened and a resulting hit-list of 1000 compounds was tested using a cellular reporter system. The topoisomerase II inhibitor mitoxantrone and its analogues pixantrone and mitoxantrone (2-hydroxyethyl)piperazine were identified as inhibitors of TLR4 and NF-ĪŗB activation. Mitoxantrone was shown to bind directly to the TLR4, and pixantrone and mitoxantrone (2- hydroxyethyl)piperazine were shown to inhibit the production of proinflammatory cytokines such as tumor necrosis factor alpha (TNFĪ±) in primary microglia. The inhibitory effect on NF-ĪŗB activation or on TNFĪ± pro-duction was not mediated through cytotoxity at ā‰¤ 1 Ī¼M concentration for pixantrone and mitoxantrone (2- hydroxyethyl)piperazine treated cells, as assessed by ATP counts. This study thus identifies a new mechanism of action for mitoxantrone, pixantrone, and mitoxantrone (2-hydroxyethyl)piperazine through the TLR4.Peer reviewe

    Liposomal drug delivery systems and anticancer drugs

    Get PDF
    Cancer is a life-threatening disease contributing to ~3.4 million deaths worldwide. There are various causes of cancer, such as smoking, being overweight or obese, intake of processed meat, radiation, family history, stress, environmental factors, and chance. The first-line treatment of cancer is the surgical removal of solid tumours, radiation therapy, and chemotherapy. The systemic administration of the free drug is considered to be the main clinical failure of chemotherapy in cancer treatment, as limited drug concentration reaches the tumour site. Most of the active pharmaceutical ingredients (APIs) used in chemotherapy are highly cytotoxic to both cancer and normal cells. Accordingly, targeting the tumour vasculatures is essential for tumour treatment. In this context, encapsulation of anti-cancer drugs within the liposomal system offers secure platforms for the targeted delivery of anti-cancer drugs for the treatment of cancer. This, in turn, can be helpful for reducing the cytotoxic side effects of anti-cancer drugs on normal cells. This short-review focuses on the use of liposomes in anti-cancer drug delivery

    Nutrition, Nitrogen Requirements, Exercise and Chemotherapy-Induced Toxicity in Cancer Patients. A puzzle of Contrasting Truths?

    Get PDF
    Amino acids can modulate cell metabolism and control cell fate by regulating cell survival and cell death. The molecular mechanisms involved are mediated by the mTOR complexes mTORC1 and mTORC2 activity. These complexes are finely regulated and the continuous advancement of the knowledge on their composition and function is revealing that their balance may represent the condition that determines the cell fate. This is important for normal healthy cells but it is becoming clear, and it is even more important, that the balance of the mTORCs activity may also condition the cell fate of cancer cells. Here, we discuss the evidences supporting the amino acids supplementation as a cancer fighting weapon and a possible strategy to counteract the myocyte toxicity associated with chemotherapy, possibly by tipping the balance of mTORCs activity

    Molecular spectroscopic markers of DNA damage

    Get PDF
    Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage
    corecore