7 research outputs found

    Future changes in North Atlantic winter cyclones in CESM-LE – Part 1: Cyclone intensity, potential vorticity anomalies, and horizontal wind speed

    Get PDF
    Strong low-level winds associated with extratropical cyclones can have substantial impacts on society. The wind intensity and the spatial distribution of wind maxima may change in a warming climate; however, the involved changes in cyclone structure and dynamics are not entirely clear. Here, such structural changes of strong North Atlantic cyclones in a warmer climate close to the end of the current century are investigated with storm-relative composites based on Community Earth System Model Large Ensemble (CESM-LE) simulations. Furthermore, a piecewise potential vorticity inversion is applied to associate such changes in low-level winds to changes in potential vorticity (PV) anomalies at different levels. Projected changes in cyclone intensity are generally rather small. However, using cyclone-relative composites, we identify an extended wind footprint southeast of the center of strong cyclones, where the wind speed tends to intensify in a warmer climate. Both an amplified low-level PV anomaly driven by enhanced diabatic heating and a dipole change in upper-level PV anomalies contribute to this wind intensification. On the contrary, wind changes associated with lower- and upper-level PV anomalies mostly compensate for each other upstream of the cyclone center. Wind changes at upper levels are dominated by changes in upper-level PV anomalies and the background flow. Altogether, our results indicate that a complex interaction of enhanced diabatic heating and altered non-linear upper-tropospheric wave dynamics shape future changes in near-surface winds in North Atlantic cyclones

    Similarity and variability of blocked weather-regime dynamics in the Atlantic-European region

    Get PDF
    Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. Due to their role in weather extremes and atmospheric predictability, regimes that feature a blocking anticyclone are of particular interest. This study investigates the dynamics of these ''blocked'' regimes in the North Atlantic-European region from a year-round perspective. For a comprehensive diagnostic, we combine wave activity concepts and a piecewise potential-vorticity (PV) tendency framework. The latter essentially quantifies the well-established PV perspective of mid-latitude dynamics. All blocked regimes during the 1979&ndash;2021 period of ERA5 reanalysis are considered. Wave activity characteristics exhibit distinct differences between blocked regimes. After regime onset, one regime (Greenland Blocking) is associated with a suppression of wave activity flux, whereas two other regimes (Atlantic Ridge and European Blocking) are associated with a northward deflection of the flux without a clear net change. During onset, the envelope of Rossby wave activity retracts upstream for Greenland Blocking, whereas the envelope extends downstream for Atlantic Ridge and European Blocking. The fourth regime (Scandinavian Blocking) exhibits intermediate wave activity characteristics. From the perspective of piecewise PV tendencies projected onto the respective regime pattern, the dynamics that govern regime onset exhibit a large degree of similarity: Linear Rossby wave dynamics and nonlinear eddy PV fluxes dominate and are of approximately equal relative importance, whereas baroclinic coupling and divergent amplification make minor contributions. Most strikingly, all blocked regimes exhibit very similar (intra-regime) variability: a retrograde and an upstream pathway to regime onset. The retrograde pathway is dominated by nonlinear PV eddy fluxes, whereas the upstream pathway is dominated by linear Rossby wave dynamics. Importantly, there is a large degree of cancellation between the two pathways for some of the mechanisms before regime onset. The physical meaning of a regime-mean perspective before onset can thus be severely limited. Implications of our results for understanding predictability of blocked regimes are discussed. We further discuss the limitations of projected tendencies in capturing the importance of moist processes, which tend to occur at the fringes or outside of the regime pattern. Finally, we stress that this study investigate the variability of the governing dynamics without prior empirical stratification of data by season or by type of regime transition. We demonstrate, however, that our dynamics-centered approach does not map predominantly on variability that is associated with these factors. The main modes of dynamical variability revealed herein, and the large similarity of the blocked regimes in exhibiting this variability are thus significant results.</p

    Dynamik von Rossbywellenpaketen aus einer quantitativen PV-Perspektive

    No full text
    Rossbywellenpakete sind ein wichtiger Bestandteil der Dynamik in den mittleren Breiten und können insbesondere VorlĂ€ufer von Schwerwetterereignissen sein. Es wird davon ausgegangen, dass sich Rossbywellenpakete positiv auf die Vorhersagbarkeit auswirken, da sie in hohem Maße durch balancierte Dynamik beschrieben werden können. Neuere Studien haben jedoch gezeigt, dass diabatische Prozesse, insbesondere Feuchtprozesse, die Amplitude und Ausbreitung von Wellenpaketen beeinflussen können und so Unsicherheiten in den Vorhersagemodellen entstehen, die sich stromabwĂ€rts ausbreiten. In dieser Arbeit wird eine Diagnostik entwickelt und angewandt, die einen Beitrag zu einem besseren VerstĂ€ndnis dieser immanenten Unsicherheiten leisten kann. Rossbywellenpakete werden in dieser Arbeit als Anomalien der potentiellen Vorticity (PV) auf isentropen FlĂ€chen, die die Tropopause schneiden, identifiziert. Diese Betrachtungsweise wurde gewĂ€hlt, da die PV nicht nur eine intuitive Beschreibung der Dynamik ermöglicht, sondern gerade auch die Vorhersagefehler der PV entlang der Tropopause maximal werden. Mit Hilfe dieser SchlĂŒsselgrĂ¶ĂŸe lĂ€sst sich die Dynamik der AtmosphĂ€re vollstĂ€ndig in vier Prozesse unterteilen, die im Kontext der Rossbywellendynamik in dieser Arbeit erstmals quantifiziert werden. Die Gruppenausbreitung eines Rossbywellenpaketes wird durch einen quasi-barotropen Ausbreitungsmechanismus beschrieben. Findet außerdem eine Wechselwirkung mit der Dynamik in der unteren AtmosphĂ€re statt, wird das Wellenpaket durch barokline Wechselwirkung modifiziert. Die Entwicklung der Anomalien durch quasi-barotrope Ausbreitung und barokline Wechselwirkung wird durch das bekannte Konzept der baroklinen Entwicklung stromabwĂ€rts beschrieben. ZusĂ€tzlich werden in dieser Arbeit divergentes Ausströmen in der Höhe und direkte diabatische Modifikation untersucht. Besonders ausgeprĂ€gtes divergentes Ausströmen ist in hohem Maße mit dem Freisetzen latenter WĂ€rme unterhalb des Ausströmens verbunden und kann daher als indirekt diabatisch betrachtet werden. In dieser Arbeit wird eine Diagnostik entwickelt, die diese Prozesse unterteilt und ihren relativen Einfluss auf die Entwicklung von Wellenpaketen quantifiziert. Insbesondere die relative Wichtigkeit der diabatischen Prozesse kann durch die neu entwickelte Diagnostik schĂ€rfer erfasst werden als mit existierenden Methoden. Die entwickelte Diagnostik wird in dieser Arbeit auf drei Fallstudien von Wellenpaketen angewandt. Um die dabei gefundenen Ergebnisse mit Hilfe vieler Wellenpakete zu untermauern, wird abschließend eine Composite-Analyse relativ zur maximalen Amplitude durchgefĂŒhrt. Barokline Entwicklung stromabwĂ€rts ist ein wichtiger Prozess fĂŒr die Amplitudenentwicklung, wird jedoch durch starkes divergentes Ausströmen in der Höhe beeinflusst. Innerhalb der Composite-Analyse ist divergentes Ausströmen sogar der dominante Prozess fĂŒr die VerstĂ€rkung der RĂŒcken und AbschwĂ€chung der Tröge. Da der divergente Einfluss in hohem Maß durch Feuchtprozesse verstĂ€rkt wird, reicht balancierte Dynamik nicht aus, um die Entwicklung des Wellenpaketes zu beschreiben. Direkte diabatische Modifikation spielt hingegen eine untergeordnete Rolle fĂŒr die Amplitudenentwicklung. Die relative Wichtigkeit der verschiedenen Prozesse zwischen den einzelnen Anomalien ist jedoch einer großen VariabilitĂ€t unterworfen. Die Ergebnisse dieser Arbeit zeigen, wie wichtig es ist divergentes Ausströmen und damit das Freisetzen latenter WĂ€rme in numerischen Vorhersagemodellen möglichst korrekt zu reprĂ€sentieren, um die Vorhersagbarkeit von Rossbywellenpaketen und den damit verbundenen Wetterereignissen zu verbessern.Rossby wave packets (RWPs) are a fundamental ingredient of midlatitude dynamics and can constitute precursors to high-impact weather events. It is often assumed that RWPs, as large-scale flow features obeying balanced dynamics, exhibit a large degree of predictability. Recent work, however, has shown that diabatic processes, in particular moist processes, can modify the amplitude and propagation of RWPs.This impact can lead to an increased forecast uncertainty, which may compromise medium-range predictability in the downstream region. As a contribution to an improved understanding of these inherent uncertainties, a framework is developed and employed in this work to quantify different processes governing RWP evolution. RWPs are identified as anomalies of potential vorticity (PV) on isentropic levels intersecting the mid-latitude tropopause. The utilization of PV allows an intuitive description of mid-latitude dynamics. Furthermore, PV errors are maximised along the mid-latitude tropopause. This PV framework allows to fully separate the dynamics into four processes which are quantified in the context of RWP dynamics for the first time. The group propagation of RWPs is described by a qusi-barotropic propagation mechanism. The RWP is also modified by baroclinic growth if there exists an interaction with low-level dynamics. The evolution of anomalies by quasi-barotropic propagation and baroclinic growth constitute the well-known concept of baroclinic downstream development. In this work diverent outflow and direct diabatic modification are investigated additionally. Arguably, prominent upper-tropospheric divergent flow is associated to a large extent with latent heat release below and can thus be considered as an indirect diabatic impact. Here a diagnostic is developed which separates the aforementioned processes and quantifies their relative impact on RWP evolution. The newly developed diagnostic is more apt to quantify the relative importance of diabatic processes as existing methods. Case studies of three RWPs and a composite-analysis based on the maximal strength of the individual anomalies are performed. In general, baroclinic downstream development is an important process for the amplitude evolution but it is strongly modified by divergent outflow. The composite analysis even reveals a first-order impact of upper-level divergent flow for the amplification of ridges and the decay of troughs. Since divergent outflow is invigorated to a large degree by moist processes, balanced dynamics are not capable to fully describe the evolution of RWPs. Direct diabatic PV modification makes a subordinate contribution to the evolution. The relative importance of the different processes exhibits considerable variability between individual troughs and ridges. The results of this work demonstrate the importance of a precise representation of divergent outflow and thus latent heat release in numerical weather prediction models for the predictability of RWPs and their associated smaller-scale weather features

    Extreme precipitation events over northern Italy. Part II: Dynamical precursors

    No full text
    The connection between weather extremes and Rossby wave packets (RWP) has been increasingly documented in recent years. RWP propagation and characteristics can modulate the midlatitude weather, setting the scene for temperature and precipitation extremes and controlling the geographical area affected. Several studies on extreme precipitation events (EPEs) in the Alpine area reported, as the main triggering factor, a meridionally elongated upper‐level trough as part of an incoming Rossby wave packet. In this work, we investigate a wide number of EPEs occurring between 1979 and 2015 in northern‐central Italy. The EPEs are subdivided into three categories (Cat1, Cat2, Cat3) according to thermodynamic conditions over the affected region. It is found that the three categories differ not only in terms of the local meteorological conditions, but also in terms of the evolution and properties of precursor RWPs. These differences cannot be solely explained by the apparent seasonality of the flow; therefore, the relevant physical processes in the RWP propagation of each case are further investigated. In particular, we show that RWPs associated with the strongest EPEs, namely the ones falling in Cat2, undergo a substantial amplification over the western North Atlantic due to anomalous ridge‐building 2 days before the event; arguably due to diabatic heating sources. This type of development induces a downstream trough which is highly effective in focusing water vapour transport toward the main orographic barriers of northern‐central Italy and favouring the occurrence of EPEs.The EPEs are subdivided into three categories (Cat1, Cat2, Cat3) according to thermodynamic conditions over the affected region. The three categories not only differ locally but also in the evolution of precursor RWPs as visible in the composite Hovmöller plots. RWPs associated with the strongest EPEs, the ones falling in Cat2, undergo a substantial amplification over the west North Atlantic due to anomalous ridge‐building 2 days before the event. This type of development induces a downstream trough which is highly effective in focusing water vapour transport toward the Apennines and the Alps.Ludwig‐Maximilians‐UniversitĂ€t MĂŒnchen http://dx.doi.org/10.13039/501100005722German Research Foundation (DFG)Transregional Collaborative Research Centr
    corecore