676 research outputs found

    Understanding how self-harm functions for individuals

    Get PDF
    The study aimed to develop a theory of the possible links between voice-hearing and self-harm. Twelve semi-structured interviews were conducted with participants living in the community and in a secure forensic setting. All participants had experience of both voice-hearing and self-harm. A grounded theory of possible links was developed from participants’ accounts of their experiences. All participants described self-harm as way of coping with negative voices and of regulating painful emotions. Some described it as a response to a fear of judgement from others, as a form of control or as a means of seeking help. The results suggest that there are numerous links between voice-hearing and self-harm. Predominantly, self-harm seems to function as a way to cope with individual voice-hearing experience. Help should focus on triggers to distress and ways to cope. Training for healthcare staff could usefully be provided by service users, focusing on the importance of being non-judgemental. Future research could examine tactile and visual experiences in relation to self-harm too, clinician perspectives on the links between voice-hearing and self-harm, and service user perspectives on the emotional availability of clinicians

    Altitude dependence of atmospheric temperature trends: Climate models versus observation

    Full text link
    As a consequence of greenhouse forcing, all state of the art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200 to 400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.Comment: 9 pages, 3 figure

    Human influence on the record-breaking cold event in January of 2016 in Eastern China

    Get PDF
    Anthropogenic influences are estimated to have reduced the likelihood of an extreme cold event in midwinter with the intensity equal to or stronger than the record of 2016 in eastern China by about two‐thirds

    Role of multi-decadal variability of the winter North Atlantic oscillation on northern hemisphere climate

    Get PDF
    The North Atlantic Oscillation (NAO) plays a leading role in modulating wintertime climate over the North Atlantic and the surrounding continents of Europe and North America. Here we show that the observed evolution of the NAO displays larger multi-decadal variability than that simulated by nearly all CMIP6 models. To investigate the role of the NAO as a pacemaker of multi-decadal climate variability, we analyse simulations that are constrained to follow the observed NAO. We use a particle filter data-assimilation technique that sub-selects members that follow the observed NAO among an ensemble of simulations, as well as the El Niño Southern Oscillation and Southern Annular Mode in a global climate model, without the use of nudging terms. Since the climate model also contains external forcings, these simulations can be used to compare the simulated forced response to the effect of the three assimilated modes. Concentrating on the 28 year periods of strongest observed NAO trends, we show that NAO variability leads to large multi-decadal trends in temperature and precipitation over Northern Hemisphere land as well as in sea-ice concentration. The Atlantic subpolar gyre region is particularly strongly influenced by the NAO, with links found to both concurrent atmospheric variability and to the Atlantic Meridional Overturning Circulation (AMOC). Care thus needs to be taken to account for impacts of the NAO when using sea surface temperature in this region as a proxy for AMOC strength over decadal to multi-decadal time-scales. Our results have important implications for climate analyses of the North Atlantic region and highlight the need for further work to understand the causes of multi-decadal NAO variability

    Using IASI to simulate the total spectrum of outgoing long-wave radiances

    Get PDF
    A new method of deriving high-resolution top-of-atmosphere spectral radiances in 10 181 bands, over the whole outgoing long-wave spectrum of the Earth, is presented. Correlations between different channels measured by the Infrared Atmospheric Sounding Interfermeter (IASI) on the MetOp-A (Meteorological Operation) satellite and unobserved wavenumbers are used to estimate far infrared (FIR) radiances at 0.5 cm−1 intervals between 25.25 and 644.75 cm−1 (the FIR), and additionally between 2760 and 3000 cm−1 (the NIR – near infrared). Radiances simulated by the line-by-line radiative transfer model (LBLRTM) are used to construct the prediction model. The spectrum is validated by comparing the Integrated Nadir Long-wave Radiance (INLR) product spanning the whole 25.25–3000 cm−1 range with the corresponding broadband measurements from the Clouds and the Earth's Radiant Energy System (CERES) instrument on the Terra and Aqua satellites at points of simultaneous nadir overpass. There is a mean difference of 0.3 W m−2 sr−1 (0.5% relative difference). This is well within the uncertainties associated with the measurements made by either instrument. However, there is a noticeable contrast when the bias is separated into night-time and daytime scenes with the latter being significantly larger, possibly due to errors in the CERES Ed3 Spectral Response Functions (SRF) correction method. In the absence of an operational spaceborne instrument that isolates the FIR, this product provides a useful proxy for such measurements within the limits of the regression model it is based on, which is shown to have very low root mean squared errors. The new high-resolution spectrum is presented for global mean clear and all skies where the FIR is shown to contribute 44 and 47% to the total INLR, respectively. In terms of the spectral cloud effect (Cloud Integrated Nadir Long-wave Radiance – CINLR), the FIR contributes 19% and in some subtropical instances appears to be negative; results that would go unobserved with a traditional broadband analysis
    • 

    corecore