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ABSTRACT

A large number of perturbed-physics simulations of the HadAM3 atmospheric model were compared
with the CERES (Clouds and Earth’s Radiant Energy System) estimates of Outgoing Longwave
Radiation (OLR) and Reflected Shortwave Radiation (RSR) as well as OLR and RSR from
the earlier ERBE (Earth Radiation Budget Experiment) estimates. The model configurations
were produced from several independent optimisation experiments in which four parameters
were adjusted. Model-observation uncertainty was estimated by combining uncertainty arising
from: satellite measurements, observational radiation imbalance, total solar irradiance, radiative
forcing, natural aerosol, internal climate variability, Sea Surface Temperature and that arising from
parameters we did not vary. Using an emulator built from 14,001 “slab” model evaluations carried
out using the climateprediction.net ensemble the climate sensitivity for each configuration was
estimated. Combining different prior probabilities for model configurations with the likelihood for
each configuration, and taking account of uncertainty in the emulated climate sensitivity gives, for
the HadAM3 model, a 2.5-97.5% range for climate sensitivity of 2.7-4.2 K if the CERES observations
are correct. If the ERBE observations are correct then they suggest a larger range, for HadAM3,
of 2.8-5.6 K. Amplifying the CERES observational covariance estimate by a factor of 20 brings
CERES and ERBE estimates into agreement. In this case the climate sensitivity range is 2.7-5.4 K.
Our results rule out, at the 2.5 % level, for HadAM3 and several different prior assumptions climate
sensitivies greater than 5.6 K.

1. Introduction

Considerable uncertainty exists about how sensitive the
climate is to changes in CO2. This is often summarised
as “equilibrium climate sensitivity” (S): the equilibrium
global-average temperature change in response to a dou-
bling of CO2. The most recent IPCC assessment reported
that S was likely (more than 66% chance) to be in the
range 2.0 to 4.5K and values greater than 4.5K could not
be ruled out(Meehl et al. 2007). This uncertainty largely
arises from uncertainty in modelling atmospheric processes
such as cloud formation and convection as well as changes
in snow and ice which act to modify the “greenhouse” effect
and albedo of the planet. Uncertainties in climate sensi-
tivity combined with uncertainty in the rate at which the
oceans take up head lead to uncertainty in the response of

the climate system to changes in greenhouse gases.
Knutti and Hegerl (2008) review various approaches

to provide probabilistic estimates of equilibrium climate
sensitivity. In broad terms these can be classified into
two different approaches. One in which observed change
or variability over the last few decades to las millennium
have been compared to models of varying complexity (e.g.
Hegerl et al. (2006); Kettleborough et al. (2007); Olson
et al. (2012)). A second approach has been to compare ob-
served and simulated climatologies(e.g. Sexton and Mur-
phy (2011); Stainforth et al. (2005); Murphy et al. (2004);
Sanderson (2011)). Such approaches are often multi-variate
and assess observational error by using multiple observa-
tional datasets. Huybers (2010) explored climate sensi-
tivities in the CMIP3 archive and found some evidence
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that models had been tuned as there was compensation be-
tween feedbacks arising from different processes. Lemoine
(2010) carried out a similar analysis but considered com-
mon biases between models and found considerable sen-
sitivity to assumptions about these biases. Huber et al.
(2011) analysing results from the CMIP3 archive and com-
paring with radiation measurements found ranges of cli-
mate sensitivity from 2.9-4.5K though did not attempt a
probabilistic estimate.

In perturbed physics ensembles(Murphy et al. 2004) key
parameters in a climate model are varied within their un-
certainty ranges leading to the possibility of climate sen-
sitivities(Stainforth et al. 2005) much larger than 6K. Re-
cently, Rowlands et al. (2012) reported on an observation-
ally constrained rates of warming to 2050 by comparing a
very large ensemble of perturbed-physics HadCML simu-
lations with observations for the period 1960-2010 period.
They concluded that global mean warming in the 2050s,
relative to 1961-1990, is likely in the range 1.4-3K

Jackson et al. (2008) using a improved Markov-chain
monte-carlo algorithm generated a range of perturbed pa-
rameter versions of the CAM3.1 model. They used a range
of observations, largely based on reanalyses, to constrain
the plausible parameter choices and found that model con-
figurations with the smallest systematic errors had a cli-
mate sensitivity within 0.5K of 3K. Järvinen et al. (2010)
also applied a variant of the Markov-chain monte-carlo al-
gorithm to estimate parameters though did not draw infer-
ences on climate sensitivity.

In part 1 of this paper we reported on successful at-
tempts to automatically tune the 3rd Hadley Atmospheric
Model (HadAM3; Pope et al. (2000)) at its N48 (3.75

◦ ×
2.5

◦
) resolution to the Loeb et al. (2009) 2000-2005 obser-

vations of Top of Atmospheric (TOA) radiation values. In
this paper we use results from those simulations to draw
observationally constrained inferences about climate sen-
sitivity. In an atmospheric model with fixed Sea Surface
Temperatures (SST) we hypothesise that there is a rela-
tionship between TOA radiation and climate feedbacks.
We put forward this hypothesis as the processes that cause
climate feedbacks also modify the outgoing radiation bud-
get in a fixed SST simulation. For example water vapour is
transported into the upper troposphere via convection and
there it reduces OLR in the fixed SST experiment. Changes
in water vapour in response to atmospheric temperature
changes through convective transport are also one possible
climate feedback. Tropospheric water vapour also produces
clouds which effect the radiation balance of a model and
changes in cloud in response to climate change are a sig-
nificant climate feedback.

The aims of this paper are to:

i. Explore if there is any relationship between simu-
lated outgoing radiation and climate sensitivity for
HadAM3.

ii. Explore if this relationship is one-to-one or one-to-
many.

iii. Produce an uncertainty estimate for model-observational
discrepancy.

iv. Use this estimate to produce an uncertainty estimate
for equilibrium climate sensitivity based on the use
of the HadAM3 model.

The rest of the paper is structured as follows. In the
following methods section we first describe our modelling
strategy, how we estimate climate sensitivity using an em-
ulator based on data from the climateprediction.net ensem-
ble (Sanderson et al. 2008), then present our comprehensive
analysis of uncertainties on model-observational discrepan-
cies before, finally, describing how we compute cumulative
density functions for climate sensitivity. Having described
our methods we then present our results before concluding
with an extended discussion.

2. Methods

In this section we first briefly describe our modelling
strategy, and how we estimated uncertainty in model-observational
discrepancy. We then describe how we estimated climate
sensitivity for any parameter combination using an “em-
ulator” (e.g. Rougier (2007)) and how we used those to
compute cumulative distribution functions for climate sen-
sitivity.

a. Modelling

The default configuration of HadAM3 has been evalu-
ated(Pope et al. 2000) and has an estimated climate sen-
sitivity of 3.3K to doubling CO2 (Williams et al. 2001;
Randall et al. 2007). This estimate disagrees with the es-
timate of 3.7K of Gregory and Webb (2008) because their
calculation was done by halving the response to 4xCO2

while Williams et al. (2001) doubled CO2. Our climate
sensitivity estimates (see later) are based on the response
to doubling CO2. For our atmospheric only simulations we
modified the default model to include a package of natu-
ral and anthropogenic forcings(Tett et al. 2007), included
a recent estimate of total solar irradiance(Kopp and Lean
2011) and corrected a bug in the Rayleigh scattering short-
wave coefficients.

We “tuned” the N48 (3.75
◦ × 2.5

◦
) version of HadAM3

by modifying four parameters (entcoef, vf1, ct and rhcrit)
which previous work(Knight et al. 2007) had shown were
important for climate sensitivity. The parameters were
modified using an optimisation algorithm which aimed to
produce models with specified global-mean outgoing long-
wave radiation (OLR) and reflected solar radiation (RSR).

We carried out several optimisation experiments. For
each experiment we started from 16 different extreme com-
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binations of the four parameters and optimised each start-
ing parameter choice to the same target values of OLR
and RSR. We optimised to six targets in all. In all, we
carried out about 2500 simulations of HadAM3 which have
a broad range of OLR and RSR values though with highest
density around the observed values. The parameter values
for those configurations close to the observed targets had
a broad range of values.

In part 1 we showed that there was a compensation
in clear sky OLR between upper tropospheric temperature
and water. Consequently most of the changes seen in the
ensemble were driven by changes in cloud. This is consis-
tent with literature on reasons for uncertainty in climate
sensitivity (e.g. Webb et al. (2006); Randall et al. (2007)).
More details can be found in part 1 of this paper.

b. Observational-Model Discrepancy

In this paper we concentrate on comparison with the
recent CERES observations of OLR and RSR (Loeb et al.
2009) but also consider the older ERBE values (Fasullo and
Trenberth 2008). Any comparison between observations
and models requires a quantitative estimate of observational-
model discrepancy. We make this estimate by considering
several sources of uncertainty and combining them to pro-
duce a total uncertainty. Our focus is on observational
uncertainties and modelling uncertainties which affect out-
going radiation. In order to convert some sources of uncer-
tainty to uncertainties in OLR and RSR we make use of
some HadAM3 simulations. Unless stated otherwise these
make use of the standard configuration of HadAM3 and do
not consider structural uncertainty. As we are consider-
ing large scale processes we assume that all uncertainties
are Gaussian and make estimates of their values for the
2001-2005 period. We consider the following sources of
uncertainty quantifying them as plus/minus one standard
deviation:

Satellite Measurement From Table 2 of Loeb et al. (2009)
we sum the individual components of the bias uncer-
tainty to give a total observational uncertainty of 1.4
and 1.0 Wm−2 for OLR and RSR respectively. We
assume these are independent of one another.

Observational radiative imbalance The TOA radiation
dataset we use was adjusted to have the same ra-
diation balance(Loeb et al. 2009) as ocean observa-
tions(Willis et al. 2004) for the upper 750 m (0.86±
0.12 Wm−2 ). Lyman et al. (2010) estimated the up-
per ocean has warmed by 0.55 to 0.73 Wm−2 . We
use 0.75± 0.25Wm−2 to include both estimates.

Uncertainty in incoming radiation There is a small un-
certainty in the incoming TSI from which we derive
the balance requirement. Solar minimum TSI(Kopp
and Lean 2011) has been estimated at 1360.8 ± 0.5

Wm−2 significantly different from older estimates(Willson
and Hudson 1991). For the period 2001-2005 this
gives a incoming top of atmosphere (TOA) radiation
of 1362.2± 0.5 Wm−2 arising from the elliptical na-
ture of the Earth’s orbit and slightly higher TSI when
the sun is active.

Internal Climate Variability From an ensemble of 19
standard configurations of HadAM3 we estimated the
covariance of OLR and RSR. The standard deviations
are about 0.1 Wm−2 for both. This is a negligible
source of uncertainty and reflects our use of atmo-
spheric models rather than coupled atmosphere/ocean
models where variability in outgoing radiation is much
larger (for example Tett et al. (2007)).

Forcing uncertainty Our simulations are all driven with
a package of radiative forcings which are uncertain(Forster
et al. 2007). Forcing is the change in downward ra-
diative flux at the tropopause after stratospheric ad-
justment(Tett et al. 2002) when the stratosphere is in
equilibrium. As our simulations are driven with ob-
served sea surface temperatures feedbacks between
forcing and atmospheric state will be reduced and so
we’d expect a change in forcing to produce a similar
change in OLR and RSR as the LW and SW forcing
respectively.

To test if forcing and outgoing radiation were sim-
ilar we carried out a set of three simulations using
the standard configuration of HadAM3: NOSUL in
which we removed the direct and indirect effect of
sulfate aerosols; Natural in which all anthropogenic
forcings were removed; NATGHG in which all an-
thropogenic forcings except well mixed greenhouse
gases (GHG) are removed. We then compared these
values for 2001-2005 with the forcing calculations of
Tett et al. (2007) for 2000. We expect the forcing
from 2000-2005 to be similar and errors in the forc-
ing estimate are small. The changes in OLR and
RSR for Natural are broadly consistent with the
forcing estimates (Table 1) with a slightly larger OLR
than the forcing would suggest. However, considering
the changes in the NOSUL and NATGHG exper-
iments suggests this may be arising from some com-
pensation between the effect of aerosols and GHG on
OLR and RSR. Some of this may be due to internal
variability in the model simulations.

The dominant SW forcing arises from aerosol forcing
and so being cautious we estimate, by comparison
between NOSUL and the reference simulations, that
this reduces RSR by 1.2Wm−2 and increases OLR by
0.2 Wm−2 . We compute the covariance matrix for a
1 Wm−2 uncertainty in SW forcing by computing the
outer matrix product ) of this vector with itself (the
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matrix multiplication of a vector by its transpose so
Cij = vivj) scaled by 1/0.9 (the SW forcing). We
assume that LW forcing largely arises from changes
in well mixed greenhouse gases and compute their
impact on RSR and OLR as 0.7 and 2 Wm−2 respec-
tively from the difference between NATGHG and
Natural simulations. We then scale these values by
1/2.11 (the LW forcing) and compute the covariance
from the outer matrix product to obtain a covariance
for a change in LW forcing of 1 Wm−2 .

To obtain radiative forcing uncertainties we use the
existing uncertainty estimates (Table TS.5 of Solomon
et al. (2007)), assume uncertainties are independent
and round to one significant figure to give 1σ un-
certainties of 1 and 0.20 Wm−2 for RSR and OLR.
These are then used to scale the covariance matrices
computed above. The dominant contribution to RSR
are from uncertainty in the direct effect and cloud
albedo effects of aerosol while for OLR the dominant
uncertainties arise for CO2 and ozone forcing. Our
estimates of forcing uncertainty, to some extent, in-
cludes structural uncertainty as we use the range of
forcing values from Forster et al. (2007) though modi-
fied through use of HadAM3 to obtain TOA RSR and
OLR.

Natural Aerosols There are many natural aerosols in
the climate system which largely effect RSR with a
minimal impact on OLR(Carslaw et al. 2010). For
the current climate natural aerosol feedbacks on the
radiation budget are small so we use uncertainties
in natural aerosols directly. Key components are or-
ganic aerosol, aerosol from the impact of fire, and
dust whose effect on RSR has been estimated at−0.03
to −1.1, −0.05 to 0.2 and −0.7 to 0.5 Wm−2 respec-
tively(Carslaw et al. 2010). These would combine,
assuming independence and that the estimates are 5-
95% Gaussians, to a total 1σ uncertainty of about 0.6
Wm−2 . We also used three simulations from Penner
et al. (2006) and after correcting all contemporary
simulations to the same RSR found the range in pre-
industrial RSR was 1 Wm−2 . We used this as a 1σ
estimate for natural aerosols as it was greater than
the Carslaw et al. (2010) estimate. As with forc-
ing uncertainty this uncertainty range incorporates
structural uncertainty in the impact of aerosols on
outgoing radiation.

SST Uncertainty On the 5-year timescales we are con-
sidering the major source of SST uncertainty is the
climatology rather than uncertainty in the individual
years. Two Hadley SST datasets have climatologi-
cal differences of less than 0.2K(Rayner et al. 2006)
over most of the world ocean. Therefore, we assume
the 1σ in SST is 0.2K. We estimated its impact on

RSR and OLR by, everywhere, increasing the SST
values by 0.5K and forcing default HadAM3 with it.
We found a change in RSR and OLR of -0.4 and 1.2
Wm−2 and scaled the response by 2/5 to give the co-
variance for SST uncertainty of 0.2 K. We also carried
out a simulation using the SST dataset of Reynolds
et al. (2002) and found this had a small impact on
RSR and OLR (about 0.1 Wm−2 ).

Other parameters Our results are based on modifying
four HadAM3 parameters which most affect S. Other
parameters have less effect on S but could affect the
outgoing radiation. For example, one of our config-
urations could be inconsistent with the observations
but if we modify other parameters it may be. We
treated this as another source of uncertainty. To esti-
mate its covariance we found the 13 distinct parame-
ter combinations from the 14,001 climateprediction.net
cases that had default values for entcoef, vf1, ct &
rhcrit and a climate sensitivity between 3.2 and 3.4.
We then ran them to compute the RSR and OLR
(Fig. 1) and computed a covariance matrix from the
13 cases. The parameters (Knight et al. 2007) that
varied were cw (precipitation threshold), ice size

(size of ice particles),dtice (ice albedo variation),
alpham (ice albedo at melting point) and ice (non-
spherical ice). The largest changes in RSR and OLR
arose from using non-spherical ice. However, these
parameter changes didn’t greatly change the total
outgoing radiation.

Loeb et al. (2009) computed estimates for average RSR
and OLR by adjusting the measured RSR and OLR values
within their estimated bias uncertainties until they were
consistent with the ocean heat content estimates of net
imbalance. As we are using slightly different estimates of
ocean heat content uncertainty and require a covariance es-
timate we computed observational uncertainty by combin-
ing distributions for the individual outgoing SW and LW
radiation bias uncertainties with a distribution for the total
radiation. Total outgoing radiation is taken to be the total
incoming - the expected imbalance ((1362.2/4−0.75)±0.3
W/m2). We extended this to include uncertainty in the or-
thogonal and independent component – the difference be-
tween RSR and OLR. In the absence of other information
we assume the distribution for the difference is a normal
distribution with mean -40% (corresponding to an albedo
of 0.3) and standard deviation 10% of the incoming radia-
tion. These are large enough that other uncertainties dom-
inate. We combine this covariance with the satellite bias
covariance by first computing the precision matrix (inverse
of covariance matrix), linearly transforming the precision
matrix to give the individual RSR and OLR components
and combining with the precision matrix for satellite bias
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uncertainty through the formula:

Λc =ΛL + Λb

µc = Λ−1
c (ΛLµL + Λbµb)

where Λ is the precision matrix and µ is the mean
value. Subscripted c, b and L are the combined values, near-
radiative balance covariance (defined above) and those from
Loeb et al. (2009) respectively.

Our analysis gives µc = (99.7, 240.0)W/m2 for the RSR
and OLR slightly different from (99.5, 239.6)W/m2 of Loeb
et al. (2009). We estimate the covariance matrix of this
combined observational error (ocean heat content and satel-
lite bias error) to be:(

0.74 −0.64
−0.64 0.82

)
.

Other sources of uncertainty are assumed independent
of each other and added to this covariance matrix. The
different sources of uncertainty vary in their magnitude
though total modelling (all sources of uncertainty consid-
ered apart from satellite bias and ocean heat content) un-
certainty is much larger than observational uncertainty.
The most important contributors to total uncertainty come
from forcing and parameter uncertainty (Fig 1) with a total
covariance matrix estimated to be:(

7.6 −4.5
−4.5 4.3

)
.

c. Estimating Climate Sensitivity

Running full simulations to calculate the equilibrium
climate sensitivity for each parameter combination was not
possible given computational constraints. We have there-
fore used a statistical model to estimate the climate sensi-
tivities for each of the candidate parameter combinations
produced in our optimisation algorithm. This approach is
becoming widely adopted in the field, whereby a statisti-
cal model can be trained on past evaluations of a climate
model with perturbed physics and then used to predict
various output quantities for new parameter combinations
(Sanderson et al. 2008; Rougier et al. 2009; Sanso and For-
est 2009), with the term emulator being adopted. The
recent UKCP09 (UK Climate Projections – see http://

ukclimateprojections.defra.gov.uk/) climate projec-
tions relied heavily on the use of statistical emulation (Mur-
phy et al. 2007). These algorithms can simply be thought
of as non-linear regressions of the climate model parame-
ters onto output quantities of interest.

In this study we have used the randomForest technique
(Breiman 2001) to build our statistical emulator, based
on a 14,001 member perturbed physics ensemble gener-
ated from climateprediction.net. All simulations were from

HadSM3, which consists of the same atmospheric model
coupled to a slab thermodynamic ocean. Climate sensitiv-
ities were estimated using existing methodology (Stainforth
et al. 2005). Subsequent simulations have recently been
performed to vary parameters continuously rather than the
original grid design improving the ability of our emulator to
learn about how climate sensitivity changes as we vary the
model parameters. In all 10 parameters were varied inde-
pendently in the climateprediction.net ensemble(Sanderson
et al. 2008), of which 4 of the most influential are consid-
ered here.

The randomForest technique is a machine learning al-
gorithm which has been shown to be very powerful in cap-
turing non-linear dependencies in a wide-variety of prob-
lems(Breiman 2001). The algorithm constructs an ensem-
ble of regression trees each built with a bootstrap sample
of the original training data, with randomised splitting at
each node. The aggregation of a number of classifiers to-
gether, known as Bagging (Bootstrap Aggregating), vastly
improves the performance of the algorithm and avoids over
fitting. The algorithm requires only 3 parameters in the
setup, namely the number of regression trees, terminal
node size and number of parameters to split the data over
at each stage in the tree construction. Sensitivity studies
(not shown) indicate that in this case the results of random-
Forest estimates of climate sensitivity are not significantly
changed by varying these parameters.

Figure 2a) shows the performance of the predictions
from the randomForest comparing simulated values in HadSM3
to predicted values from the randomForest algorithm. All
of these predictions are out-of-sample, meaning that pre-
dictions were made for models not included in the process
of fitting the randomForest. This was achieved through a
10-fold cross validation as follows,

• Randomly split the 14,001 member ensemble up into
10 segments.

• Remove all models in segment 1 from the ensemble,
and fit the randomForest on the remaining 90%.
Once fitted make a prediction for the models that
have been left out.

• Repeat for segment 2 and so on until every segment
has been left out.

The result is a set of 14,001 predictions for climate sen-
sitivity, which can be compared to the actual simulated
values from HadSM3. We do not expect the randomForest
to perfectly fit the simulations since the climate sensitivity
values we fit to are contaminated by noise due to internal
variability and uncertainties induced by the exponential fit
used (Stainforth et al. 2005). Overall we find that the ran-
domForest predictions explain over 95% of the variability
in the simulated climate sensitivity values.
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We account for uncertainty in our climate sensitivity es-
timates by using the error statistics generated from the out-
of-sample predictions. Specifically we calculate the root
mean square error (RMSE) in bins of simulated climate
sensitivity (Figure 2b). The bins are chosen to span the 5-
95% range of the simulated climate sensitivity distribution
in deciles. This RMSE is approximately 0.2K at climate
sensitivities of 2-3K and rising to 0.6K for climate sensitiv-
ities above 6K, which we use as a varying 1σ error in our
analysis. Integrated over all climate sensitivities the RMSE
is approximately 0.3K (Figure 2c). These values are in line
with estimates of the uncertainty from initial condition en-
sembles (Stainforth et al. 2005). Our error estimates are
approximately 50% smaller than a similar study who found
a 1σ error of approximately 0.45K (Rougier et al. 2009).
We attribute this to our ensemble being approximately 50
times larger and exploring a lower dimensional parameter
space leading to a much denser sampling of points.

Other methods exist to estimate uncertainty in pre-
dictions from the randomForest technique (Meinshausen
2006). We use out-of-sample error statistics as it is a stan-
dard statistical technique often used in ensemble forecast-
ing (Roulston and Smith 2003), that simplifies and adds
transparency to our analysis.

The impact of sampling uncertainty, that is the uncer-
tainty in the predicted climate sensitivity arising from the
specific ensemble members used to fit the randomForest, is
very small relative to the prediction error (Fig. 2(b)) and
so is ignored in our uncertainty analysis.

d. Computing Probability Density Functions

In part 1 of this paper we showed that an optimisation
method can be used to adjust model parameters so as to
produce simulated global averages of reflected solar radia-
tion (RSR) and outgoing longwave radiation values (OLR)
that are close to target values. We carried out about 2500
simulations in all and they have a broad range of OLR
and RSR values. We would like to use results from those
simulations to make probabilistic statements about the cli-
mate sensitivity of HadAM3. We chose to focus on climate
sensitivity as it is a key summary parameter for future cli-
mate change. However, our method could be applied to
any future prediction of a climate modelling system.

One issue we face is that the configurations we use are
generated by an optimisation algorithm. The algorithm
has the advantage of generating configurations that are
close to the target values but at the cost of making configu-
rations dependant on each other. From the approximately
2500 cases we had 78 configurations with an root-mean-
square-error of less than 1 Wm−2 to either the CERES
or EBRE observations. The individual parameter values,
from this sub-set, cover a broad range of values suggest-
ing we are sampling the distribution well. However, as dis-
cussed in part 1 there are correlations between the different

parameter values.
We label each one of N model configurations Mi with

a simulated RSR and OLR of ri. Each model configura-
tion has an associated climate sensitivity (Si) which we
compute using the emulator described in Section c. Us-
ing Bayes theorem we can write the probability of a model
configuration given observations P (Mi|O) as:

P (Mi|O) ∝ P (O|Mi)P (Mi) (1)

The constant of proportionality can be computed by
requiring that the probabilities sum to 1. P (O|Mi) is the
likelihood (Li) of Mi and we now describe how this is
computed. The density of model configurations near tar-
get values is largest while those far away from the target
have low sampling densities. The probability density for
a multi-variate Gaussian distribution with mean µ and Co-
variance C is:

ρ(r) =
1

(2π)
√

detC
exp (−1

2
(r− µ)C−1(r− µ)T ) (2)

We assume that the likelihood of eachMi varies smoothly
in in a small patch (Ωi) around ri and we can compute like-
lihoods using:

Li =

∫
Ωi

ρ(r)dr (3)

For small enough Ωi then ρ(r) is approximately con-
stant (= ρ(ri)) giving:

Li = ρ(ri)Ai (4)

where Ai =
∫

Ωi
dr. We compute Ai from the area of the

Voronoi polygon (Aurenhammer 1991) for ri. The Voronoi
polygon is the polygon that surrounds the region which is
closer to ri than any other rj. These ideas can be gener-
alised to higher dimensions.

Within the 99% consistency region a small number of
the Voronoi polygons have large areas (Fig. 3). These poly-
gons include the boundaries of the region generated by our
optimisation process and so their area depends on the ar-
bitrary choice of boundary. Over such large polygons the
area will no longer be sufficiently small that we can ap-
proximate Eqn. (3) by Eqn. (4). So we cap the polygon
area at π corresponding to a circle with unit radius giving
zero likelihood to regions far from points we generated. We
explored reducing this cap to π/4 and found it made lit-
tle difference to our results. Our sampling across the 99%
consistency region is sufficiently dense, except near some
of the boundaries (Fig. 3), that our assumptions appear
reasonable.

Our climate sensitivity values are based on integrations
of a few decades of a “slab” climate model and use of an
emulator and so are uncertain. This uncertainty depends
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on S itself (Section c and Fig. 2(b)). We assume, to be con-
servative, that this emulator uncertainty is coherent across
all Mi and thus make emulator uncertainty a significant
contribution to total uncertainty. To include this uncer-
tainty we generate 10 random realisations of S assuming
the uncertainty in it is Gaussian. For each realisation we
generate a single realisation (ε) from a Gaussian distri-
bution. Based on the uncertainties shown in Fig. 2 we
add 0.2ε when Si < 3.5 to the emulated climate sensitiv-
ity. For values of S larger than this we add: 0.3ε when
3.5 <= Si < 4.5; 0.4ε when 4.5 <= Si < 6; 0.5ε when
6 <= Si. We then re-normalise the existing likelihoods,
priors and posteriors and computed cumulative distribu-
tions for S from these distributions.

3. Results

We now apply the uncertainty estimates and approaches
described above to computed cumulative distribution func-
tions for Climate Sensitivity. Before doing that we revisit
the groups we used in part 1 of this paper.

In part 1 we split the configurations close to the CERES
and ERBE observations into two groups on the basis of
their land temperatures. Both groups had simulated OLR
and RSR close to the target values but one group was
warmer over land and drier in the tropics (termed CERES
or ERBE warm group) than the Standard configuration.
The other cluster (termed CERES or ERBE cold group)
had a surface climatology close to the default configuration.
The CERES cold group has a mean S of 3.2 K slightly
smaller than the standard HadAM3 sensitivity(Williams
et al. 2001). The CERES warm group has a slightly higher
sensitivity of 3.6 K. The ERBE clusters have a broader
range of sensitivities of 3.3 K(cold group) and 4 K(warm
group). This suggests that it is possible to get different cli-
mate sensitivities for similar values of OLR and RSR and
so S is not a single valued function of OLR and RSR.

Using all our simulations and the emulated climate sen-
sitivity we can explore the dependency of S on OLR and
RSR. This shows that high values of S occur for low val-
ues of RSR while smallest values occur at high values of
both OLR and RSR (Fig. 4). Zooming in closer to the
observations we can see a rich structure with islands of
high sensitivity surrounded by regions of lower sensitivity
(Fig. 5). We can also see quite a dense sampling of model
configurations in the region where configurations would be
consistent at the 95% level.

Our original simulations had a S range of 2.5 to 10.2K.
Only a subset of these are consistent with observations,
at the 95% level, with climate sensitives ranging from 3.0
to 4.1K for the CERES observations and 3.0-5.2 K for the
ERBE observations. To build a coupled ocean/atmosphere
model we would require that the atmospheric model be
in near radiative balance which we interpret as within a

Wm−2 of the observed value. The model configurations
that had an imbalance within 1 Wm−2 of the observed
value had a S range of 3.0 to 4.1 K for CERES and 3.0-5K
for ERBE. This suggests that, for HadAM3, it is possible
to build coupled models that do not need flux correction
but which span a plausible range of climate sensitivities.

Given the model configurations are not uniformly sam-
pled nor randomly generated our approach is to take five
different prior distributions and then compute five poste-
rior distributions. If the posterior distributions are similar
then the observations are important constraints on the pos-
terior probabilities.

We use equal-probable prior distributions where some
property is equally likely within the range of simulated val-
ues. The five we consider are:

Uniform All configurations are equally likely. This gives
a posterior probability equal to the likelihood.

Radiation All values of OLR and RSR are equally likely.

Parameter All parameter values are equally likely.

S All climate sensitivities are equally likely.

1/S All climate feedback values (1/S) are equally likely.

For equal-probable climate sensitivity we computed the
weights from the difference in the climate sensitivities with
the boundary values having the same weight as those in-
terior. Climate sensitivities were ordered monotonically
prior to computing the weights. Similar computations were
done for equal-probable climate feedbacks. For Radiation
and Parameter posteriors we constructed the priors from
the area/4-volume of the Voronoi polygons/4-polytopes.
For radiation weights we capped the area of the polygon
at π. For Parameter weights we capped the 4-volume of
the 4-polytopes at 1000 times the median 4-volume of the
Voronoi polytopes.

The priors we considered lead to a range of different
cumulative distribution functions (Fig. 6(a)). When com-
bined with the observations, and our estimated uncertainty,
the posterior distributions are all very similar (Fig. 6(a))
with 95% of climate sensitivities between 3 and 4K. Tak-
ing account of uncertainty in the emulated climate sensi-
tivity leads to a broader distribution function (Fig. 6(b))
again with little sensitivity to prior assumption. This sug-
gests, that, for our uncertainty estimate and HadAM3, the
CERES observations provide a strong constraint on climate
sensitivity. Examining the 2.5%, best estimate and 97.5%
values of the distribution (Table 2) shows that sensitivity
to prior assumption is about 0.1 giving climate sensitivities
ranging from 2.7-4.2K for HadAM3 with a best estimate of
3.4K. Climate sensitivities outside this range are inconsis-
tent with the CERES observations.

We then explored how sensitive our results are to dif-
ferent assumptions. These sensitivity experiments are:
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ERBE We treated the ERBE values of Fasullo and Tren-
berth (2008) as we did the CERES results. We first
scaled the ERBE RSR value by the Kopp and Lean
(2011) TSI values divided by 1365 Wm−2 . As mod-
elling uncertainty dominates our total covariance we
used the same covariances as before in our analysis.

CERES 2× We scaled the covariance matrix generated
from our uncertainty analysis by a factor of two but
used the CERES observations.

CERES 20× Sat. We scaled the Loeb et al. (2009) RSR
and OLR covariance by a factor of 20 and used the
CERES observations. This is sufficient (Fig. 5) to
make the ERBE and CERES values consistent with
one another.

2002 CERES We only used simulated data for 1st De-
cember 2001 -30th November 2002 in our observational-
model comparison. Internal variability was computed
from the 19-member ensemble of HadAM3. The CERES
observations and other contributions to total uncer-
tainty were as the base case.

CERES Sample We only used the first one of seven sim-
ulations in each of the optimisation iterations (see
part 1). The same observations and uncertainties
were used. This should increase the independence of
the samples.

For each of these sensitivity studies we repeated our
earlier analysis. Using the ERBE observations rather then
the CERES observations has a large impact (Fig. 7 and Ta-
ble 2) with much greater sensitivity to prior assumptions,
a marginally increased lower bound for climate sensitivity
and a much increased upper bound for climate sensitiv-
ity. Using the ERBE results we would report a 2.5-97.5
% climate sensitivity range of 2.8-5.6K with best estimates
around 4K.

Increasing the covariance and using the CERES ob-
servations (CERES 2×), not unexpectedly, increases the
range of plausible climate sensitivities with a small im-
pact at the lower end but increases the upper end to 5K. It
also increases the sensitivity of our results to prior assump-
tions. Increasing the CERES measurement uncertainties
(CERES 20× Sat.) has little impact on the lower bound for
climate sensitivity but, again, increases the upper bound
quite considerably (Table 2). The covariance in this case
provides a strong constraint on the total outgoing radia-
tion though not on the individual components. Using this
analyse we would report a 2.5-97.5% climate sensitivity of
2.6-5.4K with best estimates around 3.3-3.6K and consid-
erable sensitivity to prior assumptions. The sample sensi-
tivity case gives very similar results to the original CERES
cases though with an increase of 0.1 K in the overall lower
and upper ranges.

Turning now to the 2002 case. Here we only use one
year of simulated data to compare with one year of CERES
data. Considering the climate sensitivity as a function of
RSR and OLR (Fig. 8) we see a very similar plot with
higher climate sensitivities at low values of RSR and small-
est climate sensitivities at high RSR/OLR. The posterior
distributions of climate sensitivity using only this year are
similar to the reference CERES case with the same range
of 2.7-4.2K. This suggests we could have done our analysis
with two year simulations (1 year to spinup and 1 year to
compare with observations) rather than the 6 and a half
years we actually did. However, we would have still need
to have estimates of the climate sensitivity for those con-
figurations.

One other observation is that ERBE and CERES re-
sults are quite different from one another. Using the CERES
observations and changing covariances changes the upper
range of the CDFs but the CDFs are all similar to one
below the 60-80% level. The ERBE CDF appears to be
characterised by a general shift towards higher sensitivities
with differences between it and the CERES distributions
apparent at all levels. This leads to differences in the best
estimate climate sensitivity giving 3.3 K for the CERES
observations and about 4K, though with considerable sen-
sitivity to the prior, for the ERBE observations.

4. Discussion and Conclusions

Having shown that there is a relationship between the
two components of outgoing radiation and climate sensi-
tivity we now consider total outgoing radiation. Climate
models show on average that:

R′ = αT ′ −G (5)

Where R′ is the change in outgoing radiation, T ′ the
change in surface temperature, G the forcing and α is
termed the “climate feedback parameter” (Gregory and
Webb 2008). α is related to the climate sensitivity G2×CO2

(the forcing from doubling CO2) by G2×CO2
/α. We might

expect that with fixed SSTs and, thus, largely constant
surface temperatures that increasing α would lead to an in-
crease in total outgoing radiation while decreasing α would
lead to a decrease in total outgoing radiation. If this were
the case that would provide physical justification for our
focus on outgoing radiation in order to observationally con-
strain climate sensitivity. However, Gregory and Webb
(2008); Andrews and Forster (2008); Colman and McA-
vaney (2011) have shown that CO2 forcing can also gen-
erate, in a model dependant way, rapid changes in tro-
pospheric structure and clouds. The impact of this pro-
cess could explain why one perturbed physics version of
HadSM3 had a low sensitivity (Gregory and Webb 2008).
Initially, we neglect this process and assume that the forc-
ing from doubling CO2 is 3.76 Wm−2 (Myhre et al. 1998).
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Using this forcing we compute α from the emulated climate
sensitivities.

There is an approximately linear, though noisy, rela-
tionship between simulated total outgoing radiation and α
(Fig. 9) with large outgoing radiation associated, as ex-
pected, with large values of α. The slope of the best fit
robust line is approximately 30 K i.e. for a 0.1 Wm−2

K−1 increase in climate feedback strength the outgoing ra-
diation increases by about 3 Wm−2 . For climate feed-
back parameters values greater than about 1.2 Wm−2 K−1

the regression slope appears to be stronger with a value
of about 75 K (Fig. 9). This increase in slope at high cli-
mate feedback values cannot be explained by our neglect of
rapid clouds response to CO2 changes. Gregory and Webb
(2008) found for one low climate sensitivity configuration
of HadSM3 that rapid cloud responses caused the effective
forcing to decrease and thus the estimated value of α to
reduce. This process, if anything, would steepen the best
fit regression slope for the low climate sensitivity cases.

To test if these results arise because of the use of four
parameters or because of “tuning” the model to observa-
tions we used data from an ensemble of 100 randomly sam-
pled configurations from the 14,001 we used to generate our
emulator (see part 1). The 98 cases that did not fail due to
numerical problems also show an increase, with consider-
able scatter, in outgoing radiation as the climate feedback
parameter ((Fig. 9). Thus, at least for HadAM3, there
appears to be a link between outgoing radiation and cli-
mate sensitivity supporting our initial focus on outgoing
radiation to constrain climate sensitivity.

Our comparison between model and observation is test-
ing the model fidelity of global-averaged outgoing radia-
tion. With our experimental design it is not possible to
test the relative importance of temperature feedbacks and
rapid responses to CO2 and other forcings.

Could we have carried out our analyses more efficiently?
We generated about 2500 configurations of HadAM3 and
ran each of them for six years. This is computationally
expensive and is only possible as HadAM3 is a relatively
cheap model. We have already shown that 1 year of data
is enough to make reasonable estimates of climate sensitiv-
ity. One way to proceed might be to generate the 16 ex-
treme cases and use the three most extreme of these cases
to start a series of optimisation cases. To explore this we
sub-sampled our data to only include the CERES, ERBE
and three targets on the edge of the model-observation con-
sistent region. We then only considered the 2002 data in
the analysis. If we had done this we would have concluded
that climate sensitivity lay in the range 2.8-4.4K with some
sensitivity to prior assumptions. This is not hugely differ-
ent from our results with 2500 simulations each ran for six
years. However, we would still need to compute climate
sensitivity for those configurations.

Our focus has been on climate sensitivity for which key

processes and parameters have already been identified by
Knight et al. (2007). Other impacts of climate change
may be less obviously related to present day observations
than climate sensitivity appears to be. However, Fowler
et al. (2010) found that changes in UK extreme precipi-
tation were strongly controlled by the entcoef and vf1

parameters suggesting our results might also provide some
constraints on changes in future extreme precipitation.

We have shown that CERES observations of Reflected
Shortwave Radiation (RSR) and Outgoing Longwave Radi-
ation (OLR) provide a significant constraint on the plausi-
ble (2.5%-97.5%) range of climate sensitivities for HadAM3.
Using the more recent CERES observations we find a range
of 2.7-4.2K for HadAM3 climate sensitivity with little sen-
sitivity to a range of prior distributions and a best estimate
of 3.4K. Using the older ERBE observations we find greater
sensitivity to the prior distribution and a range of 2.8-5.6K
with a best estimate around 4K. Amplifying the CERES
OLR and RSR errors to make ERBE and CERES obser-
vationally consistent leads to high uncertainty in the indi-
vidual components but, still, small uncertainty in the total
outgoing radiation arising from uncertainty in the ocean
heating rate and Total Solar Irradiance. This uncertainty
estimate gives a best estimate of about 3.4K and a climate
sensitivity range of 2.7-5.4K.

Some caveats on our results are necessary. We may
be missing or underestimating key uncertainties in model-
observational comparison. For example we have assumed
that internal climate variability as simulated by default
HadAM3 is adequate. The model does not simulate well
the average land-surface temperature nor the clear sky out-
going radiation regardless of tuning so if we had included
these in our analysis may have reached different conclu-
sions.

Our uncertainty range only includes the effect of atmo-
spheric and land-surface processes and does not take ac-
count of oceanographic processes such as changes in ocean
circulation nor of changes in sea-ice. However, Brierley
et al. (2010) suggest that perturbations in ocean parame-
ters have little impact on future climate change in HadCM3
suggesting our neglect of them is not critical. Thus, our
results suggest that climate sensitivity, for the HadAM3
model, is unlikely (2.5%) to be greater than 5.6K. This
uncertainty could be narrowed given focused work by the
satellite community to resolve differences between the CERES
and ERBE measurements.

Our results also have implications for the recent UK
Climate Projections(Murphy et al. 2010) analysis which
is based on a set of 11 perturbed physics regional model
simulations of HadAM3 driven by perturbed physics simu-
lations of the HadCM3 Atmosphere/Ocean General Circu-
lation Model(Collins et al. 2011). All these configurations
of HadCM3 require flux correction and some have climate
sensitivities larger than our results suggest is plausible. If
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our results are correct then the impact of climate change
may be less severe than some of those simulations suggest.

Other groups have found quite different results for the
range of plausible climate sensitivities. Shiogama et al.
(2012) report a climate sensitivity range of 2.2-3.2K for the
MIROC5 model. However, unlike our range, their range
is not based on a measure of model-observational differ-
ence but instead that the atmospheric model should have
a small net TOA imbalance when driven with SSTs taken
from a pre-industrial control simulation. This experimental
design is likely to underestimate the range of climate sensi-
tivities as any coupled model configuration ran to equilib-
rium would have a small net top of atmospheric imbalance.
So it is possible that other configurations, with a broader
range of climate sensitivities, when ran with different pre-
industrial SSTs would have also been in radiation balance.

Sanderson (2011), using the CAMcube model, also found
a narrow range of climate sensitivities (2.2-3.2K) by per-
turbing four parameters across their plausible values. No
observational constraints were applied which, presumably,
would reduce the range still further.

Our study used HadAM3 and varied four parameters
which previous work suggested was important in the mod-
els climate sensitivity. Thus, our results are conditional
on both the model and the parameters varied. Our un-
certainty estimates, based as they are on HadAM3, largely
do not include structural uncertainty for which using ad-
ditional models is one way forward. As the work described
above suggests different models are likely to produce dif-
ferent ranges of climate sensitivities. One way forward is
to generate, for each model, a range of perturbed models
consistent with observations. If this can be done efficiently
then this would allow a better understanding of the range of
possible future climates in response to emissions of green-
house gases.
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Fig. 1. 95% uncertainty regions for different sources of uncertainty (see key). Also shown are parameter combinations
with default values for entcoef, vf1, ct & rhcrit and a climate sensitivity in the range 3.2-3.4K (stars) and the default
configuration of HadAM3 (black diamond).
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Fig. 2. Validation of the randomForest statistical model used to predict climate sensitivities. a) Results from a 10-fold
cross validation over the 14,001 member training set from climateprediction.net. Shown are the out-of-sample predicted
climate sensitivities against the simulated values from HadSM3. Red line shows the theoretical 1:1 relationship, b) Root
mean square prediction error as a function of simulated climate sensitivity (solid black line). Also shown is the distribution
of simulated climate sensitivities (red histogram), and root mean error variance due to sampling uncertainty (dashed black
line). Dashed grey lines indicate the deciles of the distribution defining the bins. c) Histogram of prediction error from
the out-of-sample predictions. The root mean square error of ≈ 0.3K is shown by dotted grey lines
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Fig. 3. Voronoi Polygons for modified physics simulations with only those polygons in the range 80-120 Wm−2 (RSR) and
220-260 Wm−2 (OLR) are shown. Light gray filled polygons are those that have an area greater than π. These polygons
have their areas capped at value of π for subsequent computations. Also shown are the 99% uncertainty estimates (black
ellipses) centred on CERES, at about (100, 240) Wm−2 , and ERBE, at about (107,234) Wm−2 , observations (black
crosses).

Table 1. Change in outgoing radiation (Wm−2 ) between experiment and ensemble average of standard HadAM3
configuration. Forcing column shows anthropogenic forcing from Tett et al. (2007) with RSR being the SW forcing and
OLR being the LW forcing. SW forcing largely arises from aerosols while LW forcing largely arises from well mixed
greenhouse gases. However, ozone and land-use changes affect both the SW and LW forcing.

Experiment
NOSUL NATURAL NATGHG Anthro. Forcing

RSR -1.18 -0.83 -1.55 -0.93
OLR 0.19 2.64 0.58 2.11
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Climate Sensitivity
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Fig. 4. Climate Sensitivity (K & colours) as a function of RSR (x-axis) and OLR (y-axis). The two white crosses show
the CERES (upper) and ERBE (lower) values while dashed diagonal line show total outgoing radiation agreeing with
near radiative balance. Contour levels are at 2, 2.5, 3,3.25,3.5,3.75, 4, 4.5 and 7K
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Climate Sensitivity (K)

90 95 100 105 110 115
RSR (W/m2)

225

230

235

240

245

250

O
L

R
 (

W
/m

2 )

3.00

3.00

3.00

3.25
3.25

3.25

3.50

3.50

3.50

3.50
3.50

3.75

3.75

3.75

4.00

4.
00

4.00

4.
00

4.00

4.00
4.50

4.50

4.50
4.50

4.50

4.50

5.00

5.00 5.
00

5.
00

5.
00

7.50

Fig. 5. Climate Sensitivity (K & colours) as a function of RSR (x-axis) and OLR (y-axis). Details as Fig. 4 but focusing
on the region 90–115 Wm−2 (RSR) and 225–250 Wm−2 (OLR). Also shown is the region where simulated OLR and RSR
is consistent with CERES or ERBE observations at the 95% level (white ellipse). The thick dashed ellipse centred on
the CERES observations shows the 95% consistency region when only observational uncertainty is considered. The green
dashed ellipse is the observational uncertainty region when the satellite errors are scaled by a factor of 20 (see main text).
The solid green line is the total uncertainty in this case. The six black crosses show the optimisation targets.
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CDF for Climate Sensitivity using CERES Obs.
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Cumulative Density Function for Climate Sensitivity 
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Fig. 6. Cumulative distribution functions for climate sensitivity (S). a) prior (dotted) and posterior (solid) cumulative
distribution functions for five different prior distributions which are Equi-probable in: parameters (gray), radiation (red),
climate sensitivity (green), feedback strength (blue). Solid black line shows the cumulative likelihood distribution. Solid
horizontal lines show the 2.5, 50, and 97.5 % values. b) as a) but for posterior distributions when uncertainty in emulated
estimate of S is included. Other details as a)
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Cumulative Density Function for Climate Sensitivity 
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Fig. 7. Cumulative distribution functions for climate sensitivity (S) for a variety of sensitivity studies (see key). Other
details as Fig. 6(b).
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Climate Sensitivity (K) using 2002 data
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Fig. 8. As Fig. 5 but for 2002 data and uncertainties.

Table 2. Climate Sensitivity Summary. Shown for each named observation, uncertainty estimate and prior (see main
text) are the best estimate, 2.5% and 97.5% estimates of climate sensitivity (K) for HadAM3. Values are taken from the
posterior distributions.

Name Prior Best Est. 2.5% 97.5% Name Best Est. 2.5% 97.5%
CERES Uniform 3.4 2.8 4.2 ERBE 4.0 3.0 5.3

Parameters 3.4 2.8 4.1 3.7 2.8 4.8
Radiation 3.4 2.7 4.1 4.3 3.0 5.6

S 3.4 2.8 4.2 4.3 3.0 5.6
1/S 3.4 2.8 4.2 4.1 2.9 5.5

CERES 2× Uniform 3.5 2.8 4.4 CERES 20× Sat. 3.5 2.8 4.6
Parameters 3.4 2.7 4.2 3.3 2.7 4.1
Radiation 3.3 2.6 4.4 3.4 2.6 5.0

S 3.5 2.7 5.0 3.6 2.7 5.4
1/S 3.4 2.7 4.7 3.4 2.7 5.0

2002 CERES Uniform 3.4 2.8 4.2 CERES Sample 3.4 2.8 4.1
Parameters 3.4 2.7 4.1 3.4 2.9 4.1
Radiation 3.4 2.7 4.1 3.4 2.8 4.2

S 3.4 2.8 4.3 3.4 2.8 4.2
1/S 3.4 2.8 4.2 3.3 2.7 4.2
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Total Outgoing Radiation vs Climate Feedback
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Fig. 9. Total Outgoing Radiation (y-axis) vs climate feedback (x-axis). Asterisks show results for individual simulations.
Dark gray diamonds show results from the random sample ensemble. Climate feedback is computed using a forcing of
3.76 Wm−2 for doubling CO2. Results from default parameter simulation of HadAM3 are shown with a gray diamond
assuming a default climate sensitivity of 3.3K. The solid horizontal line shows the total outgoing radiation from Loeb
et al. (2009) while the dashed horizontal line shows the same from Fasullo and Trenberth (2008).
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