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Attribution of Detected Temperature Trends in
Southeast Brazil
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Abstract Southeast Brazil has great economic importance for Brazil and is highly vulnerable to
extreme events like floods and droughts. Studies have shown an increase of temperature in this region.
Using a new detection and attribution framework (Ribes et al., 2017, https://doi.org/10.1007/
s00382-016-3079-6) and Coupled Model Intercomparison Project Phase 5 models, this change is found to
be largely due to greenhouse gases. We estimate that greenhouse gases contribute a warming of 0.95 to
1.5 ◦C to the observed warming trend of 1.1 ◦C between 1955 and 2004. Temperature changes from natural
and nongreenhouse gas anthropogenic forcing are estimated to be small over this period. Results are
robust using different time windows. Using the Community Earth System Model ensembles to evaluate the
impacts of internal variability, observational and model error shows that most uncertainty arises from
model error.

Plain Language Summary Southeast Brazil has great economic importance for Brazil and is
highly vulnerable to extreme events like floods, droughts, and heat waves. Many studies link those kind of
events with an increase in temperature due to climate change, largely caused by increasing atmospheric
concentrations of greenhouse gases. This study tested whether or not human-induced climate change is
responsible for the observed increase in temperature in Southeast Brazil. The observed 1.1 ◦C per 50-year
trend is largely due to increasing greenhouse gases, which means that they have a significant role in
observed changes in Southeast Brazilian temperatures.

1. Introduction
Southeast Brazil is the geopolitical region in Brazil that comprises the states of São Paulo, Rio de Janeiro,
Minas Gerais, and Espírito Santo and is responsible for more than 50% of Brazil Gross Domestic Product with
a broad range of economic activities that includes agriculture, mineral extraction, automobile industries,
and others (IBGE, 2018b). More than 40% of Brazil's population lives in this region, and it contains two of
the most important cities of the country, São Paulo and Rio de Janeiro (IBGE, 2018a). The high exposure
makes the region vulnerable to changes in climate, like droughts in major cities (Coelho et al., 2016) and
impacts on agricultural production due to an increase of temperature (Camargo, 2010; Marengo, 2001).

The fifth assessment report of the Intergovernmental Panel on Climate Change reported an observed global
warming of 0.85 [0.65 to 1.06] ◦C between 1880 and 2012. In Brazil, studies have shown an increase of
more than 3 ◦C in the city of São Paulo between 1940 and 2010 (Silva Dias et al., 2013). Also, the frequency
of warm nights (minimum temperature above 90% percentile) has ,increased while cold nights (minimum
temperature below 10% percentile) have decreased with statistically significant trends over Southeast Brazil
(Vincent et al., 2005). Other observational studies have been made in South America and on individual cities
in the state of São Paulo, to analyze whether a change in temperature could be detected and if these were due
to increasing greenhouse gases (GHG) and other forcings (Blain et al., 2009; Marengo, 2001). Although these
studies find statistically significant trends in observations, the authors suggest that these changes could be
either due to increase in GHG from climate change or local factors like urbanization and land use changes
from agricultural production that could have a significant impact on observed trends.

The question of whether anthropogenic climate change has driven temperature trends has been investi-
gated in many studies, where the causal relation between climate forcings and observed changes is evaluated
(Bindoff et al., 2013). The common approach is to use linear regression models called optimal fingerprint
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(Allen & Stott, 2003; Allen & Tett, 1999; Hegerl et al., 1996) where scaling factors on simulated signals are
estimated with a range of uncertainty. The magnitude of the scaling factor and its confidence interval is
then used to make inferences about the causation of the external forcing in the observed changes. Although
some Detection and Attribution (D&A) studies have been made for particular weather events in Brazil
(de Abreu et al., 2019; Otto et al., 2015), no long-term change attribution studies have been conducted in
South America. Further, few D&A studies have been made to attribute human-induced climate change in
subnational scale as done here. We could only find three recent studies (Wang et al., 2017; Wan et al., 2019;
Wang et al., 2018). These studies found a human influence in temperature trends in Western China, regional
Canadian change, and in extreme temperature indices in 17 subcontinent regions around the world. The
study of Karoly and Stott (2006) also detected a human influence on Central England temperature. There-
fore, this study aims to answer the question of whether observed temperature changes in Southeast Brazil
can be attributed to human and natural forcings.

2. Methods
2.1. Attribution Model
The statistical model used for attribution of climate change in Southeast Brazil is that of Ribes et al. (2017),
here after called R17. R17 assumes that the true observed climate response (Y*) is a sum of true responses
from each individual forcing (X∗

i )

Y∗ =
n𝑓∑
i=1

X∗
i , (1)

Y = Y∗ + 𝜖Y , (2)

Xi = X∗ + 𝜖Xi
, (3)

where Y is the observation vector, Xi is the simulated individual forcing vector, 𝜖Y ∼ N(0, 𝛴Y ) is observational
uncertainty, and 𝜖Xi

∼ N(0,ΣXi
) is model uncertainty, with their respective covariance matrices 𝛴Y and ΣXi

.
We assume that observational uncertainty arises from internal variability and observational error, while 𝜖Xi
arises from internal variability and model uncertainty. Since both errors are assumed to be Gaussian, X∗

i and
Y* can be estimated using Maximum Likelihood Estimators with exact confidence intervals as

Ŷ∗ = Y + ΣY (ΣY + ΣX )−1(X − Y ) ∼ N(Y∗, (Σ−1
X + Σ−1

Y )−1), (4)

X̂∗
i = Xi + ΣXi

(ΣY + ΣX )−1(Y − X) ∼ N(X∗
i , (Σ

−1
Xi

+ (ΣY +
∑
𝑗≠i

ΣX𝑗
)−1)−1), (5)

where ΣX =
∑n𝑓

i=1 ΣXi
and X =

∑n𝑓

i=1 Xi. To check for consistency between the observed signal with any set
of forcings, 𝜒2 tests are used as discussed in R17. First, this test is used to detect consistency with internal
variability only (equation (6)) and all of those response patterns are tested to detect consistency between
observations and the analyzed forcings (equation (7)). Consistency of observations with the response to
individual forcing is also tested using equation (7).

Y ′Σ−1
Y Y ∼ 𝜒2(n), (6)

(Y − X)′(ΣY + ΣX )−1(Y − X) ∼ 𝜒2(n), (7)

where n is the size of Y . As in R17 study, ordinary least square (OLS; Allen & Tett, 1999) is also used to
compare the results found with the R17 methodology. The OLS method assumes a linear relation between
the simulated responses Xi and the observed one Y . A scaling factor 𝛽 is then estimated by 𝛽OLS which can
be used for inference

Y = X𝛽 + 𝜖Y , (8)

𝛽OLS = (XTΣ−1
Y X)XTΣ−1

Y Y . (9)

The main differences between the R17 method and OLS is that R17 does not include a scaling factor but
does explicitly include observational and model uncertainty. Therefore, 𝜖Y in OLS is calculated using only
internal variability.
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Figure 1. (a) Region of interest comprising all states in Southeast Brazil highlighted by the black box bounded by
53.4◦W, 26.5◦S and 39◦W, 12.7◦S. (b) The 10-year moving average of annual temperature anomalies, between 1920 and
2017 for CRUTEM4 (black line), ALL (blue line), GHG (red line), and NAT (green line) simulations. Other
Anthropogenic (OA; orange line) is ALL minus GHG and NAT ensemble means. Shading indicates the model spread
(5% to 95% range). Correlations between CRUTEM4 annual anomalies and 1955–2004 ensemble means are displayed
in the labels. The anomalies are calculated with respect to 1961 to 1990 climatology.

2.2. Covariance Matrices
Estimation of Y* and X∗

i in equations (4) and (5), respectively, requires inverting covariance matrices:𝛴Y and
ΣXi

. A first guess would be to use the sample covariance matrix Σ̂ = Σ̂E = ZZT∕n, where Z is a p×n matrix of
p successions of vectors of pseudo-observations with n observations. However, in the case when p > n, Σ̂ is
noninvertible. Approaches used in the literature, instead of using Σ̂E, are the Moore-Penrose pseudo-inverse
(Allen & Tett, 1999; Hegerl et al., 1996) or regularization of the covariance matrix (Ribes et al., 2009, 2013).
The first approach involves truncating Σ̂ to the first k leading empirical orthogonal functions, while the
second involves a linear combination given by

Σ̂ = 𝜌Ip + 𝜆Σ̂E, (10)

where Ip is the p × p identity matrix and 𝜌 and 𝜆 are real numbers. This regularization approach is used in
this study to provide a better estimate of the sample covariance matrix, and the estimation of 𝜌 and 𝜆 are as
Ledoit and Wolf (2004) used in Ribes et al. (2009, 2013). In regularization the choice of 𝜌 and 𝜆 is important
because depending on their values, it might lower the variance and increase the bias. However, Ledoit and
Wolf (2004) method showed indications of leading to a more powerful statistical test, with a lower mean
squared error, and is more objective than truncating to the leading k eigenvectors, which depends on the
choice of k (Ribes et al., 2009).

3. Data and Preprocessing
Gridded temperature observations from the Climatic Research Unit Temperature, version 4 data set
(CRUTEM4) are used in this study to estimate the observed trends in temperature for Southeast Brazil.
This data set uses homogenized weather stations, has been corrected for urbanization effects, and provides
monthly anomalies on a 5◦ × 5◦ latitude/longitude grid from 1850 to present (Jones et al., 2012). The area
selected for this study comprises all of the land in Southeast Brazil, bounded by 53.4◦W, 26.5◦S and 39◦W,
12.7◦S (Figure 1a).

Annual averages of the area-averaged monthly anomalies were computed following the procedure described
in Morice et al. (2012). We focus on three distinct periods: 1955 to 2004, 1935 to 2004, and 1955 to 2014.
The first period was selected because it is when the trend is more significant, observations are more reliable
(Figure S1 in the supporting information), and simulated signals for different forcings are available. The
second period was selected as a sensitivity test with a longer period of data. The third period expands the
analysis for 10 years to include a clear signal of the detected trend using only the all forcings simulation. For
2005 to 2014 simulations using Representative Concentration Pathway 8.5 from the models of the Coupled
Model Intercomparison Project Phase 5 (CMIP5; Table S1) were used. The 10-year averages were then com-
puted and the temporal mean subtracted from the data in order to focus only on the anomalies following
Ribes et al. (2013). Therefore, the sizes of the vectors Xi and Y are five for the 1955–2004 period, seven for
1935–2004, and six for 1955–2014.
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In this study we use simulations from the Community Earth System Model (Hurrell et al., 2013) to under-
stand which of the various uncertainties (internal variability, observational error, and model error) are more
important. We use 34 members from the large ensemble (CESM-LE; Kay et al., 2015) driven with both nat-
ural and anthropogenic forcings (ALL), a three-member ensemble with solar and volcanic forcings (NAT),
and a three-member ensemble driven only with GHG. Simulated data are interpolated to the CRUTEM4
5◦ × 5◦ grid and masked by the observational monthly mean data set. The CMIP5 models in Table S1 are
also used to compute model error, and the multimodel ensemble mean is also used to attribute changes in
temperature due to one or a subset of forcings.

We consider the effects of GHG, natural influences (solar and volcanic), and other anthropogenic forcings
(OA, mostly aerosols). Following the notation presented in equations (1)–(3), we have then XGHG, XNAT, and
XOA, respectively, where the latter is calculated as XOA = XALL − XNAT − XGHG. To calculate the covariance
matrices Σ̂Y , Σ̂XGHG

, Σ̂XNAT
, and Σ̂XOA

, the covariance matrix for internal variability (Σ̂v) is required. This is
done by calculating the within-ensemble differences from the large CESM ensemble. In order to be consis-
tent with the OLS approach, Σ̂v is split into two covariance matrices, one used to prewhiten the data and
other for uncertainty estimates in 𝛽OLS. This is achieved by splitting the members from the large ensemble
into two subsets of 17 members and then calculating Σ̂v1

and Σ̂v2
using this subset of simulations.

To determine which of the different errors is dominant, we carry our three main analyses: (1) using only
internal variability to compute Σ̂Y and Σ̂Xi

, (2) including observational error (Σ̂obs) from CRUTEM4 for the
estimation of Σ̂Y , and (3) including model errors (Σ̂m) for the estimation of XGHG, XNAT, and XOA. The covari-
ance matrices for internal variability (Σ̂v1

and Σ̂v2
) are calculated using the regularization approach described

in section 2.2 and as used in Ribes et al. (2013), as a means to obtain a better estimate of the sample covari-
ance matrix. In order to calculate the observational uncertainty Σ̂obs, we consider the correlated error by
using 100 ensemble members of the land-only component of HadCRUT4 and the uncorrelated errors from
the same data set using the method described in Morice et al. (2012). The model error covariance matrix Σ̂m
is conservatively estimated using the “models are statistically indistinguishable from the truth” paradigm as
described in R17 Appendix—“Estimation of 𝛴m and 𝛴X with unbalanced data,” for each of the signals sep-
arately with the CMIP5 models that are indicated in Table S1. In all cases we assume that the mean values
for X∗

i comes from the CESM-LE ensemble. This is done also on the third step, when the CMIP5 models are
included to calculate Σ̂m, to make the analysis consistent with the previous steps. Therefore, for the third
step we would have

Σ̂Y = Σ̂obs
⏟⏟⏟

Observational error

+ Σ̂v1
,

⏟⏟⏟
Internal variability

(11)

Σ̂Xi
=
(

1 + 1
nm

)
Σ̂m

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Model error

+ 1
n2

m

nm∑
i=1

Σ̂v2

n𝑗

,

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Internal variability

(12)

where nm is the number of models and nj is the number of ensembles for the jth model. We carry out a final
analysis where we estimate X from the CMIP5 multimodel average. For the case in which we use CESM-LE
as the model mean nm = 1 for calculating internal variability in equation (12) while when using CMIP5
multimodel mean nm > 1, based on Table S1. Throughout this study, internal variability was computed from
the CESM Large Ensemble.

From the best estimates calculated using the R17 methods, trends are estimated using linear regression. To
compute the uncertainty range for these trends, 1,000 random samples are generated using the covariance
matrices from equations (4) and (5) and the trends calculated from each sample. The 5% and 95% percentiles
are considered as the lower and upper thresholds, respectively. For OLS, the model response is scaled by
𝛽 OLS to calculate the trend by linear regression and estimate the warming/cooling rate to be compared with
R17 best estimates (X̂∗

i and Ŷ∗) trends. We also show 5–95% ranges for OLS.

4. Results and Discussion
The observed anomalies from CRUTEM4 (Figure 1b) show a warming trend, from the decadal averages, of
0.22 [0.15 to 0.31] ◦C per decade between 1955 and 2004 (1.1 [0.7 to 1.5] ◦C over 1955–2004). ALL captures
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Table 1
Hypothesis Testing 𝜒2P Value for Individual Forcings From R17 Model in Cases Where (1) Internal Variability Only Was
Used to Estimate the Covariance Matrices (iv only), (2) Inclusion of Observational Error (iv + obs), (3) Inclusion of
Observational Error and Model Error (iv + obs + model), and (4) Considering the Multimodel Mean as the Ensemble
Mean Instead of CESM Large Ensemble (MMM iv + obs + model)

Forcing/error iv only iv + obs iv + obs + model MMM iv + obs + model
1955–2004
Internal variability 0.00 0.00 0.00 0.00
OA 0.01 0.02 0.36 0.03
NAT 0.00 0.00 0.02 0.01
GHG 0.66 0.70 0.84 0.98
All forcings (GHG+NAT+OA) 0.70 0.73 0.96 0.96
ALL 0.35 0.43 0.74 0.86
1935–2004
Internal variability 0.00 0.00 0.00 0.00
OA 0.00 0.00 0.00 0.00
NAT 0.00 0.00 0.01 0.00
GHG 0.73 0.78 0.92 0.95
All forcings (GHG+NAT+OA) 0.36 0.47 0.82 0.48
ALL 0.01 0.06 0.21 0.36

Note. The results presented here are for the 1955–2004 and 1935–2004 time window. GHG = greenhouse gas.

the observed warming with a correlation on annual time scales of 0.60 from 1955 to 2004 suggesting that
about 40% of the observed interannual to multidecadal variability is forced. GHG has a similar trend when
compared to CRUTEM4 and ALL simulation between 1955 and 2004, with a correlation of 0.39. This suggests
that much of the observed temperature increase in Southeast Brazil could be due to GHG only. NAT and ALL
suggests a slight cooling from the 1991 Pinatubo eruption in the early 1990s. The estimated OA signal cools
until about 1980 and warms after that, with a linear correlation of 0.25 with observations in the 1955–2004
time window. This result might be due to changes in emissions of sulfur dioxide from Europe and North
America that had rapidly increased starting in the beginning of the twentieth century and then declined
from the 1970s due to emission control policies (Hoesly et al., 2018).

The best estimates Ŷ∗ and X̂∗
i are calculated using the R17 statistical model, using CESM as reference in

three steps to understand the importance of the different types of uncertainties, as described in section 3:
(1) using only internal variability (R17 iv only), (2) including observational error (R17 iv + obs), and (3)
including model error (R17 iv + obs + model). After that, the linear trends in temperature using the raw
model data and the R17 estimates for each of the three steps are estimated and compared.

Our results consistently find a detectable impact of GHG on Southeast Brazil temperature. Inclusion of
observational error did not cause a significant increase in uncertainty suggesting that observational error is
relatively unimportant. However, significant uncertainty comes from modeling uncertainty which affects
the calculation of R17 best estimates. Approximately half of the uncertainty in the iv + obs + model case
comes from model error. For example, uncertainties in CESM GHG forced trend for 1955–2004 are 2.1 times
larger with all sources of error considered than with just internal variability.

The CESM OA response, with its small warming, and large uncertainties of −0.06 to 0.18 ◦C due to model
error, is consistent with the observed trends (Table 1). However, for the 1935 to 2004 time window OA makes
no statistically significant contribution to the observed trends. Given this and the conservative estimates of
model error for R17, we think that OA alone does not explain changes in Southeast Brazil.

Using CESM as the mean to define the forced signals and using all CMIP5 models to estimate Σ̂m may not
be ideal because we assume a Gaussian uncertainty centered around CESM which lies toward the tail of
the CMIP5 model distribution. Therefore, we use the R17 statistical model, considering all of the uncertain-
ties, with the CMIP5 multimodel ensemble mean (R17 MMM iv + obs + model). Between 1955 and 2004
(Figure 2a), we also find a significant contribution to the observed warming from GHG. A trend of 0.19 to
0.30 ◦C per decade is found that is equivalent to a 0.95 to 1.50 ◦C warming in this 50-year period. NAT and

DE ABREU ET AL. 5



Geophysical Research Letters 10.1029/2019GL083003

Figure 2. Temperature trends calculated from decadal averages for the observations (CRUTEM4) and each individual
forcing (OA, NAT, and GHG) using R17 three signal models best estimates (X̂∗

i and Ŷ∗) for the different steps of
analysis that include (1) internal variability only to estimate the covariance matrices (iv only, circle), (2) inclusion of
observational error (iv + obs, triangle down), and (3) inclusion of observational error and model error (iv + obs +
model, triangle up). The estimated trend using the multi model ensemble mean (MMM iv + obs + model, x symbol)
and the CESM/CRUTEM4 raw data (diamond) are also included (raw data; X and Y from R17 notation) as well as the
OLS estimate after scaling by 𝛽 OLS (squares). The trends for ALL are based on R17 one signal model best estimates
and are displayed in the shaded area in left of Figures 2a and 2b. (a) Trends between 1955 and 2004, (b) 1935 to 2004,
and (c) 1955 to 2014 using RCP8.5 to extend the simulations after 2005. The numbers above the marker show the ratio
between the uncertainty relative to the best estimate (X∗

i and Y*) of the iv-only case calculated as in equation (12).

OA are small and have significant uncertainties which makes it difficult to draw any conclusion regarding
the impact of those forcings for this time scale and for the study region. Contrary to using CESM OA signal,
CMIP5 OA multimodel ensemble mean does not show consistency with the observed warming in the 1955
to 2004 time window, with a trend of −0.07 to 0.01 ◦C per decade.

Changing the time window of the analysis to begin in 1935 (Figure 2b) reduces the uncertainty bars, but
results remain consistent with the 1955–2004 analysis. For the 1935–2004 time window the GHG trend is
0.15 to 0.23 ◦C per decade that is equal to a 1.05 to 1.61 ◦C warming in 70 years, which is also consistent
with the observed trend. Our results are consistent with OLS (scaling factors in Figure S2) even though this
estimate shows a higher positive trend and uncertainty for GHG. Using data from 1955 to 2014 from the
ALL simulation increases the signal-to-noise ratio, reducing the uncertainty bars when considering model
error, which implies that the simulated warming signal is more consistent across the different models. The
results are also compatible with the observed trends which continues to imply a forced component.

5. Conclusions
The current study has used a novel Detection and Attribution method from Ribes et al. (2017) to attribute
temperature changes of approximately 1.1 ◦C per 50 years for Southeast Brazil. Using the CMIP5 multimodel
ensemble mean gave a trend of 0.95 to 1.50 ◦C per 50 years from GHG which suggests that anthropogenic

DE ABREU ET AL. 6



Geophysical Research Letters 10.1029/2019GL083003

activities made a substantial contribution to the observed trend with no significant contribution from natural
or non-GHG anthropogenic sources. The results seem to be robust to change in time window of the analysis
and by taking account of both observational and model errors. Using CESM as the model mean to investigate
which error is dominant in this analysis showed that more than half of the error may come from model
uncertainty. It might be possible to reduce this uncertainty by rejecting some models that are very different
from the observations. The inclusion of model error had a significant impact in the uncertainty of CESM
OA warming signal for 1955–2004 which was not supported by the multimodel mean and by changes in the
time window that did not reveal any contribution from other anthropogenic sources.

When other attribution studies are considered, we see that warming trend in Southeast Brazil due to anthro-
pogenic activities is consistent with other regions. A trend of 0.19 to 0.30 ◦C per decade due to GHG was
found in this study, with a small contribution from other anthropogenics, of −0.07 to 0.01 ◦C per decade.
The IPCC AR5 reported an attributable warming trend of 0.08 to 0.21 ◦C, for global temperature, per decade
due to GHG (Bindoff et al., 2013). GHG trends that are comparable to the overall anthropogenic trends
for SE Brazil are consistent with regional studies for Western China, Canada, and Central England that
showed attributable decadal warming trends due to anthropogenic activities of 0.19 to 0.30, 0.07 to 0.23,
and 0.14 to 0.26 ◦C, respectively (Karoly & Stott, 2006; Wan et al., 2019; Wang et al., 2018). However, unlike
these regional studies, we are able to calculate contributions from three different forcings. The results
shown in this study, of a significant anthropogenic-induced warming in a regional scale, also suggest that
human-induced climate change is becoming very strong at human relevant scales.
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