47 research outputs found

    Impact of Baseline Magnetic Resonance Imaging on Neurologic, Functional, and Safety Outcomes in Patients With Acute Traumatic Spinal Cord Injury

    Get PDF
    Study Design: Systematic review. Objective: To perform a systematic review to evaluate the utility of magnetic resonance imaging (MRI) in patients with acute spinal cord injury (SCI). Methods: An electronic search of Medline, EMBASE, the Cochrane Collaboration Library, and Google Scholar was conducted for literature published through May 12, 2015, to answer key questions associated with the use of MRI in patients with acute SCI. Results: The literature search yielded 796 potentially relevant citations, 8 of which were included in this review. One study used MRI in a protocol to decide on early surgical decompression. The MRI-protocol group showed improved outcomes; however, the quality of evidence was deemed very low due to selection bias. Seven studies reported MRI predictors of neurologic or functional outcomes. There was moderate-quality evidence that longer intramedullary hemorrhage (2 studies) and low-quality evidence that smaller spinal canal diameter at the location of maximal spinal cord compression and the presence of cord swelling are associated with poor neurologic recovery. There was moderate-quality evidence that clinical outcomes are not predicted by SCI lesion length and the presence of cord edema. Conclusions: Certain MRI characteristics appear to be predictive of outcomes in acute SCI, including length of intramedullary hemorrhage (moderate-quality evidence), canal diameter at maximal spinal cord compression (low-quality evidence), and spinal cord swelling (low-quality evidence). Other imaging features were either inconsistently (presence of hemorrhage, maximal canal compromise, and edema length) or not associated with outcomes. The paucity of literature highlights the need for well-designed prospective studies. © 2017, © The Author(s) 2017

    Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study

    Get PDF
    ABSTRACT: OBJECTIVES: Degenerative cervical myelopathy (DCM) involves extrinsic spinal cord compression causing tissue injury and neurological dysfunction. Asymptomatic spinal cord compression (ASCC) is more common, but its significance is poorly defined. This study investigates if: (1) ASCC can be automatically diagnosed using spinal cord shape analysis; (2) multiparametric quantitative MRI can detect similar spinal cord tissue injury as previously observed in DCM. DESIGN: Prospective observational longitudinal cohort study. SETTING: Single centre, tertiary care and research institution. PARTICIPANTS: 40 neurologically intact subjects (19 female, 21 male) divided into groups with and without ASCC. INTERVENTIONS: None. OUTCOME MEASURES: Clinical assessments: modified Japanese Orthopaedic Association score and physical examination. 3T MRI assessments: automated morphometric analysis compared with consensus ratings of spinal cord compression, and measures of tissue injury: cross-sectional area, diffusion fractional anisotropy, magnetisation transfer ratio and T2*-weighted imaging white to grey matter signal intensity ratio (T2*WI WM/GM) extracted from rostral (C1-3), caudal (C6-7) and maximally compressed levels. RESULTS: ASCC was present in 20/40 subjects. Diagnosis with automated shape analysis showed area under the curve >97%. Five MRI metrics showed differences suggestive of tissue injury in ASCC compared with uncompressed subjects (p<0.05), while a composite of all 10 measures (average of z scores) showed highly significant differences (p=0.002). At follow-up (median 21 months), two ASCC subjects developed DCM. CONCLUSIONS: ASCC appears to be common and can be accurately and objectively diagnosed with automated morphometric analysis. Quantitative MRI appears to detect subclinical tissue injury in ASCC prior to the onset of neurological symptoms and signs. These findings require further validation, but offer the intriguing possibility of presymptomatic diagnosis and treatment of DCM and other spinal pathologies

    Plasma Dynamics

    Get PDF
    Contains reports on eight research projects split into two sections.National Science Foundation (Grant ENG79-07047)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143D)U.S. Department of Energy (Contract DE-ACO2-78ET-51013)U.S. Department of Energy (Contract DE-ACO2-78ET-53073.AO02)U.S. Department of Energy (Contract DE-ACO2-78ET-53074)U.S. Department of Energy (Contract DE-ACO2-78ET-53076)U.S. Department of Energy (Contract DE-ACO2-78ET-51002

    Plasma Dynamics

    Get PDF
    Contains reports on ten research projects split into two sections.National Science Foundation (Grant ENG77-00340)U.S. Department of Energy (Contract EY-76-S-02-2766)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Department of Energy (Contract ET-78-C-01-3019)U.S. Department of Energy (Contract ET-78-S-02-4681)U.S. Department of Energy (Contract ET-78-S-02-4682)U.S. Department of Energy (Grant EG-77-G-01-4107)U.S. Department of Energy (Contract ET-78-S-02-4714)U.S. Department of Energy (Contract ET-78-S-02-4886)U.S. Department of Energy (Contract ET-78-S-02-4690

    Plasma Dynamics

    Get PDF
    Contains reports on ten research projects divided into two sections.National Science Foundation (Grant ENG79-07047)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Department of Energy (Contract DE-ACO2-78ET51013)U.S. Department of Energy (Contract DE-ASO2-78ET53073.AO02)U.S. Department of Energy (Contract ET-78-S-02-4682)U.S. Department of Energy (Contract DE-AS02-78ET53074)U.S. Department of Energy (Contract DE-ASO2-78ET53050)U.S. Department of Energy (Contract DE-AS02-78ET51002)U.S. Department of Energy (Contract DE-ASO2-78ET53076

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on nineteen research projects split into five sections.National Science Foundation (Grant ENG75-06242-A01)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Energy Research and Development Administration (Contract EY-76-C2-02-3070.*000

    Plasma Dynamics

    Get PDF
    Contains reports on seventeen research projects split into two sections.National Science Foundation (Grant ENG77-00340)U. S. Energy Research and Development Administration (Contract E(11-1)-2766)U. S. Energy Research and Development Administration (Contract EY-76-S-02-2766)U. S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U. S. Department of Energy (Grant EG-77-G-01-4107

    Spearfishing Regulation Benefits Artisanal Fisheries: The ReGS Indicator and Its Application to a Multiple-Use Mediterranean Marine Protected Area

    Get PDF
    The development of fishing efficiency coupled with an increase of fishing effort led to the overexploitation of numerous natural marine resources. In addition to this commercial pressure, the impact of recreational activities on fish assemblages remains barely known. Here we examined the impact of spearfishing limitation on resources in a marine protected area (MPA) and the benefit it provides for the local artisanal fishery through the use of a novel indicator. We analysed trends in the fish assemblage composition using artisanal fisheries data collected in the Bonifacio Strait Natural Reserve (BSNR), a Mediterranean MPA where the spearfishing activity has been forbidden over 15% of its area. Fish species were pooled into three response groups according to their target level by spearfishing. We developed the new flexible ReGS indicator reflecting shifts in species assemblages according to the relative abundance of each response group facing external pressure. The catch per unit effort (CPUE) increased by ca. 60% in the BSNR between 2000 and 2007, while the MPA was established in 1999. The gain of CPUE strongly depended on the considered response group: for the highly targeted group, the CPUE doubled while the CPUE of the untargeted group increased by only 15.5%. The ReGS value significantly increased from 0.31 to 0.45 (on a scale between 0 and 1) in the general perimeter of this MPA while it has reached a threshold of 0.43, considered as a reference point, in the area protected from spearfishing since 1982. Our results demonstrated that limiting recreational fishing by appropriate zoning in multiple-use MPAs represents a real benefit for artisanal fisheries. More generally we showed how our new indicator may reveal a wide range of impacts on coastal ecosystems such as global change or habitat degradation

    Predicting at-sea distribution of Razorbill in the St. Lawrence Gulf and Estuary, Québec, Canada during the breeding period using GPS telemetry

    No full text
    Seabirds in the St. Lawrence Gulf and Estuary are vulnerable to anthropogenic threats such as oil spills and fisheries bycatch. A better understanding of their at-sea distribution is needed to determine occurrence and abundance hotspots where protection and conservation efforts should be concentrated. The goal of this study was to develop an at-sea distribution map of Razorbills (Alca torda) during the breeding period throughout the St. Lawrence to respond efficiently in the event of an environmental emergency. We tracked breeding Razorbills using GPS transmitters (n = 58) in six colonies located in the province of Québec along the St. Lawrence between 2015 and 2018. Two sets of models and maps (habitat suitability and density) were developed for Razorbills from GPS locations and a set of eight environmental covariates using a machine-learning approach (boosted regression trees). We then predicted at-sea habitat suitability and density around all known and active Razorbill colonies throughout the St. Lawrence (n = 85). The main covariates affecting habitat suitability and density of Razorbills were distance to the colony and distance to shore. Sea surface temperature and chlorophyll-a concentration were also important for habitat suitability. The model allowed generating at-sea maps for the entire targeted area during the breeding period. We identified large areas of high suitability (hotspots) to determine locations where Razorbills are most at risk and where conservation efforts should be focused. This work will be important to assess risk and minimize impacts in the case of an environmental emergency such as oil spills occurring in the St. Lawrence
    corecore