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A. Basic Plasma Research

1. NONLINEAR WAVE INTERACTIONS

National Science Foundation (Grant ENG79-07047)

Abraham Bers, Robert H. Berman, Kwok C. Ko, Vladimir B. Krapchev, Abhay K. Ram,

Kim S. Theilhaber, Maria Elena Villalon

We report on theoretical and computational work related to studies of waves

in plasmas. This group's work is aimed at understanding large-amplitude, coherent

waves in a plasma in general, and their use in plasma heating in particular. Prog-

ress on four research topics is described.

(a) Nonlinear Waves in the Presence of Collisions

The one-dimensional adiabatic theory1'2 for a high-frequency wave is extended

to include electron-ion collisions. The corresponding Fokker-Planck equation is

analytically solved to first order in the collisional frequency. Modifications to

the trapped and the untrapped electron distribution function are found. The

bulk-electron distribution function is significantly different from a Maxwellian

and is approximately that as given by the adiabatic theory.1 The power dissipated

in the plasma is then evaluated.

(b) Parametric Resonance Electron Heating by a LH Wave

The dynamics of the electrons in a two-dimensional electrostatic lower-hybrid

(LH) wave has been studied. For the bulk electrons (k1 vt/w < 1, k±vt/Q < 1) it

is found that the motion perpendicular to BT is described by the Mathieu equation.

Every particle with longitudinal velocity v 11, such that 2/w - k 1  n (integer)

will belong to an unstable resonant zone. Typically, there are more than 50 such

zones in the bulk of the electron distribution function. In these zones the par-

ticles are nonadiabatic, i.e., their gyroradii exponentially diverge in time. When
2the wave potential is large enough, so that k e4/mw Q 1, the width of the zone

and the growth rate in it are large and an appreciable electron heating can take
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place. This mechanism may explain experimental results of LH electron heating

when the launched wave will not be Landau damped. 5

A more comprehensive study of the nonlinear dynamics will be undertaken to

establish the saturation mechanism and the possible impact on electron transport.

(c) Stochasticity and Random Behavior in Plasma Dynamics

The standard mapping on a unit torus is a model problem illustrating the

change of ordered to chaotic motion. A global measure of stochasticity is used

to analyze the effect of subharmonic resonances on the transition to stochasticity.

In particular, the thresholds for resonances to occur are characterized by rapid

changes in the global measure.6 This work so far has ignored self-consistency.

Preliminary calculations of self-consistent orbits show important differences from

the nonself-consistent ones.

Current generation and plasma heating by electrostatic wave packets is being

studied in a Id self-consistent particle code with a stationary ion background.

We are carrying out a study of the effects of varying the driving wave spectrum -

its amplitude and phase velocities. We have performed one set of experiments for-

mulated as a stochastic acceleration problem which show significant trapping ef-

fects that cannot be neglected. 7  Next, we have also treated the trapped particles

self-consistently. Quasi-linear theory is found to be inadequate to predict or

describe this problem. Two distinct fully stochastic regimes are evident. The

first has a moderate driving field amplitude; when the spectrum of waves is nar-

row, one can be selective towards the excitation of waves in the plasma; when it

is broad, a wide spectrum of plasma fluctuations develops. The second regime has

large field amplitude and can excite a wide spectrum, both directly and indirectly,

through nonlinear coupling. Preliminary results on heating and current generation

show a broad driving spectrum can create and maintain a superthermal electron tail

while a narrow one produces a "bump-on-tail." A standing wave gives little current

but can produce significant heating.

(d) Mode-Coupling in Inhomogeneous Vlasov Plasmas8'9

The theory of pair-wise coupled modes excited at a real frequency w in a

plasma which is weakly inhomogeneous in one spatial dimension x, is developed on
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the basis of local Vlasov dispersion relations D(k,z) = 0, which define a many-

valued mapping of the real axis x = Rez onto the complex plane of the wavenum-

ber k. Mode coupling is, by definition, the analytical continuation of a branch

of the mapping, and only occurs at the branch points. This requires that the z-

plane be cut along contours Cb given by D(kc,Cb) = 0, DD(kc,z)/k = 0, where z

traces a contour passing through the branch points. The coupled modes can be ana-

lyzed by expanding the dispersion relation to second-order in k around the saddle

points and along the lines kc(x), yielding a system of embedded dispersion rela-

tions corresponding to second-order differential equations possessing turning

points at the appropriate branch points of the dispersion relation.

References

1. V.B. Krapchev, A.K. Ram, Phys. Rev. A 22, 1229 (1980).

2. V.B. Krapchev, A.K. Ram, "Adiabatic Theory for a Single Nonlinear Wave in a
Vlasov Plasma and an Explanation of Electric Holes," 1980 Sherwood Meet-
ing on Theoretical Aspects of Controlled Thermonuclear Research, Tucson,
Arizona, 1980.

3. A.K. Ram, V.B. Krapchev, M. Shoucri, Bull. Am. Phys. Soc. 25, 1003 (1980).

4. V.B. Krapchev, Bull. Am. Phys. Soc. 25, 1019 (1980).

5. J.J. Schuss et al., PFC/RR-80-6.

6. R.H. Berman, "Transition to Stochasticity in a Deterministic System," RLE
Report PRR 30/10, MIT, Cambridge, Mass. (1980); submitted to Nonlinear Physics
(currently under revision).

7. R. Berman, A. Bers, V. Fuchs, K. Ko, V. Krapchev, A. Ram, K. Theilhaber,
E. Villalon, "Theory of High Power Lower Hybrid Heating of Tokamak Plasma" in
Proc. 8th International Conference on Plasma Physics and Controlled Nuclear
Fusion Research - Bruxelles, I.A.E.A., Vienna, 1980.
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to Phys. Fluids.

9. V. Fuchs, K. Ko, A. Bers, "The Coupling Approximation of Local Dispersion
Relations," Bull. Am. Phys. Soc. 25, 1034 (1980).

PR No. 123 118



(XX. PLASMA DYNAMICS)

2. RENORMALIZATION METHODS IN PLASMA TURBULENCE THEORY

National Science Foundation (Grant ENG79-07047)

Thomas H. Dupree

Plasma fluctuations with velocities of the order of or less than the thermal

velocity are being studied. In the stationary case, these fluctuations are known

as B.G.K. modes. In the turbulent case, they have been referred to as clumps. A

clump is an excess or deficiency in the local phase density as compared with the

local average density. We can picture the deficiency case as a hole, and it has

the interesting property of being gravitationally bound. These structures persist

on a long time scale in the plasma and have important effects on a variety of

plasma phenomena. The earlier theory of these fluctuations is being improved and

a more rigorous theory developed. In particular, the new theory conserves both

the electric energy of the fluctuations and the kinetic energy of the particles.

3. INTENSE RELATIVISTIC ELECTRON BEAMS

National Science Foundation (Grant ENG79-07047)

U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143D)

George Bekefi, Alan Palevsky

During the past year our major experimental and theoretical effort has been

in the generation of coherent microwave and submillimeter radiation using intense

relativistic electron beams. This is a continuation of the work described last

year in RLE Progress Report No. 122 (January 1980).
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B. Plasma Research Related to Fusion

1. PHYSICS OF THERMONUCLEAR PLASMAS

U.S. Department of Energy (Contracts DE-ACO2-78ET-51013 and
DE-ACO2-78ET-53073.AO02)

Bruno Coppi

The combined experimental and theoretical investigation of plasmas where the

nuclear fusion reaction products give a significant contribution to the global

energy balance is the long-term goal of our program.

In view of their attractive confinement properties, we consider, in particu-

lar, plasmas with relatively high densities, in the range 1014 to 1015 particle/

cm3, and temperatures of several kiloelectron volts. The line of experimental de-

vices that we have developed for this is presented by its prototype, the Alcator A

machine, and is characterized by toroidal plasma columns that can sustain both

high currents and current densities. This characteristic, that leads to adoption

of toroidal magnet configurations of compact size and relatively high fields, has

made it possible to achieve and maintain the record values for the confinement

parameters "ni", the product of the peak particle density and the energy replace-

ment time. In addition, a sequence of plasma regimes of basic physical interest,

in terms of the different characteristics of the electron distribution in velocity

space and of the collective modes that are excited, has been produced. Plasma

regimes of thermonuclear interest that are nearly impurity-free have been realized

at the same time.

By combining these experimental results with the theoretical analysis of the

global transport properties in the plasma regimes that have been attained and the

available theory of deuterium-tritium plasmas where the produced a-particles con-

tribute substantially to their heating, it has been possible to formulate a re-

search program directed toward achieving thermonuclear ignition by a series of

compact devices (called Ignitors or Alphators).

A considerable design effort on experiments of this type has been developed

with a team of European collaborators. This has been particularly encouraged by

the final announcement made by the U.S.S.R. delegation at the 1980 International
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Atomic Energy Agency in Brussels that it had undertaken the construction of a

compact deuterium-tritium burning device with general characteristics similar to

those of the present Ignitor design.

Further encouragement has come from the experiments carried out on the

Frascati Torus device that have extended the energy confinement times obtained by

the Alcator A device.

As a related development, we have found that experiments leading to testing

of the ignition conditions for advanced fuels reactors (that is, not involving

tritium) can be undertaken on the basis of present-day technologies.1

Until recently, the realization of a D-He 3 or a D-D burning reactor has been

considered a goal to be achieved in the next century, since a near-term experiment

to test the possibility of igniting these kinds of plasmas could not be foreseen.

In fact, in order to achieve this goal, it is necessary to have a plasma-confine-

ment configuration that can attain, for instance:

(a) Values of n oTE (with no the peak plasma density and TE the energy re-

placement time) higher than 5 x 1014 sec/cm ;

(b) Values of <8> = 87<p>/<B2> (with <p> the average plasma pressure and

<B2>/8F the average magnetic pressure of the confining magnetic field)

around 10 percent or higher;

(c) Plasma currents around 5 MA or higher, in order to generate the magnetic

fields needed to confine the 14.7 MeV protons produced; and

(d) Peak plasma temperatures around 65 keV or higher.

These objectives can be achieved simultaneously in an axisymmetric toroidal con-

figuration in which:

(i) Goal (a) is pursued on the basis of presently known scalings for the

plasma thermal conductivity that exhibit a favorable dependence of TE
on n. Thus it is proposed that peak particle densities, exceeding

1015 cm-3, can be obtained in a high-field (120 kG) confinement

having a sufficient area of its transverse cross section meet the

desired noTE criterion. Well-confined plasmas with peak density

values higher than 1015 cm-3 have, in fact, been produced in the Alca-

tor device at M.I.T.

(ii) Goal (b) is pursued by adopting a combination of magnetic and geometric
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parameters, such as the torus aspect ratio, in such a way that during the

heating cycle the plasma is maintained in one of the macroscopically sta-

ble regimes that have been identified in recent theoretical developments.2

(iii) The adoption of high magnetic-field technologies will make it possible

to induce plasma currents exceeding 5 MA without violating any of the

known criteria against macroscopic instabilities.

(iv) Goal (d) can be achieved by adopting an rf heating system to supple-

ment ohmic heating in order to bring a deuterium-tritium plasma to

ignition conditions. Thus, tritium is used as a "match" to raise the

plasma temperature, and, as this temperature increases, is gradually

replaced by He3 . The most convenient frequency for the auxiliary

heating system appears to be that corresponding to the first harmonic

of the cyclotron frequency of He3, and, at the same time, to the second

harmonic of the cyclotron frequency of tritium.

We note that the effectiveness of ion cyclotron heating in plasmas

with two species of ions has been well demonstrated in several experi-

ments carried out on the most advanced existing toroidal devices.

The usually-known ignition conditions, based on the assumptions that (1) the

distributions of all components of the background plasma are Maxwellian, and (2)

the slowing-down of the charged fusion-reaction products is due to Coulomb scat-

tering only, are relaxed wren considering the following effects:3

(a) Nuclear scattering collisions ("knock-on" events) modify the fraction

of energy transferred to the background ions and electrons during the

slowing down of the fast-charged fusion products in the background

plasma;

(b) The fuel particles promoted in energy by their interaction with the

fusion-reaction products have a nonnegligible self-interaction proba-

bility ("tail-tail" events); and

(c) Fast fuel particles that are promoted in energy by a large energy-trans-

fer nuclear scattering event, or intermediate fusion-reaction products,

can fuse with other fuel particles belonging to the Maxwellian part of

their distribution ("fast-fusion" or "propagating reaction" events).

We have carried out an analysis of the heating cycles4 that are appropriate for
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these experiments (we call them "Candor"), and consequently, an approximate evalu-

ation of all the main forms of energy loss. These evaluations have been verified,

by sophisticated numerical codes, such as the one developed by S. Tamor of S.A.I.

for the electron-cyclotron emission.

As is traditional with our mode of operation, during 1980 we have had a sys-

tem of close collaborations with national and overseas institutions for both our

theoretical and experimental programs. Our contributions have been presented at

major national and international meetings.

References

1. B. Coppi, "Near-Term Feasibility of Candid Fusion Reactors," M.I.T./R.L.E.
Report PRR-80/24, 1980.

2. B. Coppi, G. Crew, and J.J. Ramos, "Search for the Beta Limit," M.I.T./R.L.E.
Report PRR-80/19 (Cambridge, MA, 1980); to appear in Comments on Plasma Physics
and Controlled Fusion Research.

3. R.W. Conn and G.W. Shuy, Paper V-5 in Proceedings of the VIIIth International
Conference on Plasma Physics and Controlled Nuclear Fusion Research, Brussels,
Belgium, 1980 (International Atomic Energy Agency, Vienna, Austria; in press).

4. S. Atzeni and B. Coppi, "Ignition Experiments for Neutronless Fusion Reac-
tions," M.I.T./R.L.E. Report PRR 80/11, 1980; Comments on Plasma Physics and
Controlled Fusion Research 6, 77 (1981).

2. RF HEATING AND NONLINEAR WAVES IN TOROIDAL PLASMAS

U.S. Department of Energy (Contracts DE-ACO2-78ET-51013 and
DE-ACO2-78ET-53074)

Abraham Bers, Robert H. Berman, Vladimir Fuchs, Leo P. Harten, Kwok C. Ko,

Vladimir B. Krapchev, Abhay K. Ram, Kim S. Theilhaber, Maria Elena Villalon

The objective of this group's theoretical and computational work is to explore

specific aspects on the use of externally applied rf power for the heating and

confining of toroidal fusion plasma. Much of this group's work of the past was

summarized at last year's international conference on plasma physics and controlled

nuclear fusion research in Bruxelles. 1 Progress on four topics is reported here.
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(a) Nonlinear Coupling of RF from Waveguides to a Plasma

(1) Temporal evolution of the coupling problem

We are studying nonlinear effects in the coupling of lower hybrid waves from

a waveguide array into a tokamak plasma. The nonlinear effect considered is the

ponderomotive density depression which is considerable at the high power levels

(several kW/cm 2 ) needed for supplementary heating. The method of solution is inte-

grating numerically the evolution equation for lower hybrid waves, in time and in

two space dimensions, with a small waveguide array as a source. A steady state

is reached, and we then determine the reflection coefficient in the waveguides

and the nonlinear wave spectrum generated inside the plasma. The following ef-

fects have been observed. 293  (i) A traveling-wave excitation couples according

to previous analytic theory.4  Furthermore, inside the plasma the spectrum is

well behaved. We do not see the large nonlinear reflections predicted by a less

general evolution equation. 5 This is important in connection with current-drive

schemes. (ii) The numerical reflection coefficient agrees qualitatively with the

results of some high-power experiments.6  Reflection for the in-phase waveguides,

large at low powers, decreases sizeably with increasing power, while on the other

hand the out-of-phase array experiences larger reflection. At large powers the

reflection curves may cross, with the in-phase array coupling as much power as

the out-of-phase array. (iii) As the waves penetrate the plasma the spectra are

considerably shifted and broadened, with smaller nz 's depleted to larger ones. We

are presently extending the power of the numerical scheme, to allow for a more

complete description of the waveguides and a finer computational mesh.

(2) Steady-state solution

The steady-state electromagnetic coupling problem of lower hybrid waves with

self-consistent density modulation is considered.7'8 The exciting structure is a

two-waveguide array and in the absence of rf the plasma is assumed to have a linear

density profile. The governing nonlinear Klein-Gordon equation is formulated as a

system of coupled Airy equations in Fourier space. Numerical solutions to the non-

linear system compatible with radiation conditions are obtained. Spectral broaden-

ing and bending of resonance-cone trajectories are observed with increase of
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incident power with these nonlinear effects being more pronounced for the T phasing

at the same power level. Calculations of reflectivities and power coupled are in
8

progress, and comparison with predictions of recent theory will be made.

(b) Linear Mode-Conversion and Damping in the Presence

of Ion-Cyclotron Harmonics

The linear mode conversion of lower hybrid to warm plasma waves is studied

taking into account all plasma inhomogeneities (Vn, VB, VT).9-12 Numerical solu-

tions of the full dispersion relation for Alcator A parameters and profiles show

that the presence of the ion-cyclotron harmonics introduces significant modifica-

tion to the wave-propagation characteristics, and portions of the incoming lower

hybrid wave spectrum can undergo successive but partial mode conversions into

warm plasma waves. The process is well modeled by a second-order dispersion re-

lation derived under a vanishing group velocity condition.11 The corresponding

wave equation is solved numerically, and power-flux calculations indicate that a

considerable amount of power can be dissipated in the mode-conversion region.

(c) Current Generation by Nonlinear Waves

The lower-hybrid steady-state current has been calculated13 using the Vlasov

distribution function derived for a strongly magnetized plasma. 14 The analytical

results have been applied to the study of the current that can be generated in

the Versator II experiment. A numerical integration of the Vlasov equation con-

firms the analytical predictions.15

In order to study the feasibility of the current-drive scheme, the Vlasov

equation has been modified to include the electron-ion collisions. The corre-

sponding Fokker-Planck equation has been analytically solved up to first order in

the collisional frequency. The distribution function for the trapped and the

untrapped electrons is determined. Preliminary results indicate that the ratio

of the power dissipated (in watts) to the current generated (in amperes) for the

Versator II is between 20 and 50 depending on the density and the parallel wave-

length (along the toroidal magnetic field).
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(d) Thermal Stability for Steady-State Tokamak Reactors

We are studying methods of operating a tokamak reactor near ignition in a

thermally stable manner. Most of the computations have been done with the High-
16

Field Compact Tokamak Reactor (HFCTR) design, without and with line averaging

of profiles. We have investigated the use of temperature-programmed supplemental

heatingl 7 in order to create thermally stable tokamak reactor equilibria with

high-Q in a subignited state. 18 We consider a time delay between the measured

temperature and the power input to the controlled plasma and find that time delays

of order 1 second still preserve stable operation.19 RF-power is a very attractive

method for supplying the varying heating power needed for such operation.

References

1. R. Berman, A. Bers, V. Fuchs, K. Ko, V. Krapchev, A. Ram, K. Theilhaber, and
E. Villalon, "Theory of High Power Lower Hybrid Heating of Tokamak Plasma"
in Proc. 8th International Conference on Plasma and Controlled Nuclear Fusion
Research - Bruxelles, I.A.E.A., Vienna, 1980.

2. K. Theilhaber and A. Bers, "Nonlinear Evolution of the Excitation of Lower

Hybrid Waves," Bull. An. Phys. Soc. 25, 1003 (1980).

3. K.S. Theilhaber, K. Ko, V. Krapchev, and A. Bers, "Nonlinear Propagation and
Coupling of Lower Hybrid Waves Excited by a Waveguide Array," 1980
Sherwood Meeting, Theoretical Aspects of Controlled Thermonuclear Research,
Tucson, Arizona, April 1980.

4. V. Chan and S. Chiu, Phys. Fluids 20, 565 (1980).

5. C.F.F. Karney, "Temporal Evolution of Lower Hybrid Waves in the Presence of
Ponderomotive Density Fluctuations," Princeton Plasma Physics Lab., PPL-
1672, June 1980.

6. C. Singh, P. Briand, and L. Dupas, "Lower Hybrid Experiment in the Petula
Tokamak," Proc. 3rd Topical Conf. on RF Plasma Heating, Pasadena, 1978.

7. K. Ko and V. Krapchev, Bull. Am. Phys. Soc., 918 (1980).

8. V. Krapchev, K. Theilhaber, K. Ko, and A. Bers, MIT Report PFC/JA-80-20.

9. K. Ko, A. Bers, and V. Fuchs, Bull. Am. Phys. Soc., 1003 (1980).

10. V. Fuchs, K. Ko, and A. Bers, Bull. Am. Phys. Soc., 1034 (1980).

11. V. Fuchs, K. Ko, and A. Bers, MIT Report PFC/JA-80-16.

12. K. Ko, V. Fuchs, and A. Bers, "Power Absorption of Lower Hybrid Waves near
Mode Conversion in the Presence of Ion Cyclotron Harmonics," 1980
Sherwood Meeting, Theoretical Aspects of Controlled Thermonuclear Research,
Tucson, Arizona, 1980.

PR No. 123 126



(XX. PLASMA DYNAMICS)

13. V.B. Krapchev and A.K. Ram, Nuclear Fusion 20, 1533 (1980).

14. V.B. Krapchev and A.K. Ram, Phys. Rev. A. 22, 1229 (1980).

15. A.K. Ram, V.B. Krapchev, and M. Shoucri, Bull. Am. Phys. Soc. 25, 1003 (1980).

16. D.R. Cohn et al., "HFCTR Conceptual Design," MIT Plasma Fusion Center Re-
port 79-2 (1979).

17. L. Harten, "Stability of Ignition of Tokamak Plasmas," M.S. Thesis, Depart-
ment of Physics, M.I.T., February 1980.

18. L. Harten, V. Fuchs, and A. Bers, "Creating Stable Tokamak Reactor Equilibria
by Supplemental Heating," Nucl. Fusion 20, 833 (1980).

19. L. Harten, V. Fuchs, and A. Bers, "RF Control of High Q Sub-Ignited Tokamak
Plasmas," Bull. Am. Phys. Soc. 25, 934 (1980).

3. NONLINEAR THEORY OF PLASMA INSTABILITIES

U.S. Department of Energy (Contracts DE-ACO2-78ET-51013 and
DE-ACO2-78ET-53074)

Thomas H. Dupree, David J. Tetreault

Concepts from strong plasma turbulence are being used to investigate mag-

netic islands in tokamaks. Turbulent magnetic fluctuations formed through self-

consistent currents are being studied. The purpose is to determine how the re-

sulting turbulent destruction of magnetic surfaces affects tokamak plasma con-

finement.

Work is also beginning on computer simulations of the structure of clumps

in plasma. A nonlinear instability due to the regeneration of ion and electron

clumps is being studied. The effect of self-gravitating phase space holes on

the regeneration of clumps is being investigated.

PR No. 123 127



(XX. PLASMA DYNAMICS)

4. TOKAMAK RESEARCH: RF HEATING AND CURRENT DRIVE

U.S. Department of Energy (Contracts DE-ACO2-78ET-51013 and
DE-ACO2-78ET-53076)

George Bekefi, Miklos Porkolab, Kuo-in Chen, Stanley C. Luckhardt

Introduction

Heating tokamak plasmas with rf power has a large theoretical literature and

has attracted wide interest over the years; however, experimental work is just

beginning to scratch the surface of the problem, and as yet relatively few care-

ful experimental investigations have been carried out in this field. The purpose

of experimental work going on at the Versator II tokamak is to study the detailed

physical processes involved in rf heating of a tokamak plasma.
2 2 2 2The use of RF power near the lower-hybrid frequency (w = p ./(1+ 2 /2 ),LH p1 pe ce

has long been considered as a means of heating ions in tokamak discharges, 1' 2

More recently, experiments have shown that electron heating can also be obtained

via lower-hybrid wave injection.3 In view of the apparent capability to modify

the electron velocity distribution function by injection of a properly tailored

wavelength spectrum of lower-hybrid waves, it has recently been proposed4 that

lower-hybrid power injected with a net toroidal angular momentum should be capa-

ble of producing, via Landau absorption, a steady-state toroidal current in toka-

maks.

A fusion reactor driven in steady state with rf power has a number of at-

tractive features distinguishing it from the commonly encountered transformer-

driven pulsed devices. In particular, steady-state operation would eliminate the

problems of peak loading of reactor output-power equipment and the thermal cycling

of the reactor walls inherent in pulsed operation.

Lower-hybrid experiments in progress on Versator II using phased-waveguide

array, grill-type coupling structures are capable of studying all three aspects

of current interest in the lower-hybrid frequency range: ion heating, electron

heating, and current drive.

Recently, a second series of experiments has begun at Versator in which

high microwave-power levels at the electron-cyclotron frequency are employed.

These experiments in cooperation with the Naval Research Laboratory use the
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gyrotron source developed at the Naval Research Laboratory. The NRL gyrotron

provides power of 100 kW at a frequency of 35 GHz for 10 msec-duration pulses.

To understand the physics of rf processes in tokamak plasmas, the target

plasma must be capable of a well-controlled and flexible equilibrium state, and

energy confinement and transport processes must be carefully monitored with a

full array of plasma diagnostic experiments. For this reason, a major part of

the Versator effort involves implementation and maintenance in reliable operation

of plasma diagnostic experiments.

Equilibrium Studies and Diagnostics

The Versator II tokamak as a facility for rf heating experiments provides a

well-diagnosed target plasma for these experiments. The operation of Versator II

without rf injection is similar to many other experimental tokamak devices, thus

the basic ohmically heated plasma operation is phenomenologically well-understood

and well known.

The ohmic heating discharges are characterized by good repeatability of

basic discharge parameters shot-to-shot with typically only a few percent varia-

tion. Plasma position is controlled to within 0.5 cm, and plasma density is

controlled by programmable gas puffing. The basic parameter ranges character-

istic of Versator operation are shown in Table XX-1.

Impurity levels are maintained at low levels by titanium sublimation pump-

ing before plasma operation. With titanium gettering, discharges with Zeff 1

are obtained.

A full array of plasma diagnostic experiments are in operation or planned

for operation in the near future. The ion component is routinely monitored using

a charge-exchange spectrometer; and spatially and time-resolved measurements of

the bulk ion temperature are reliably and routinely obtained with a VUV spec-

trometer.5  Electron-temperature measurements are routinely obtainable by a ruby

laser Thomson-scattering experiment. This laser system has been upgraded over

the last six months for high-energy operation, up to 10 joules/pulse, and the

system now has the capability of making temperature-profile measurements. Non-

thermal and high-energy tail features of the electron distribution will be moni-

tored in the near future with a second-harmonic cyclotron emission detector and
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Table XX-I.

VERSATOR II PARAMETERS

Major Radius

Minor Radius

Ohmic Heating

Plasma Current

Toroidal Field

Pulse Duration

40 cm

13 cm

30-100 kW

25-50 kA

8-15 kG

20-50 msec

Ion Temperature

Electron Temperature

Confinement Time

Density ne
eff

120-160 eV

\250-350 eV

~1 msec (Est.)

%0.2-3 x 1013 cm

1-3

a soft x-ray pulse-height spectrometer. These two experiments are currently

under construction.

Microwave-scattering experiments have been carried out in the Versator II

plasma with a 2-mm Extended Interaction Oscillator power source. Coherent scat-

tering from electron-density fluctuations in the drift-wave frequency range has

been observed. The spectrum of density fluctuations is generally decreasing with

w for all values of k1 , with fluctuation activity observed from 10 kHz up to

300 kHz. More recently, coherent scattering from injected lower-hybrid waves has

been observed and the spectral density has been measured as a function of k .6
I

These are the first tokamak experiments in which the lower-hybrid wave has been

detected by microwave scattering.
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Lower-Hybrid Experiments

The problems addressed in the Versator lower-hybrid experiments include:

Technology: Improvement of power transmission in waveguides.

Coupling: Physics of wave excitation by waveguide array.

Wave propagation: Measurements of wave trajectories in plasma with probes

and microwave scattering.

Power Absorption: Mechanism of power absorption - do the waves heat ions,

electrons or drive current?

In the past year experimental results have been obtained in all of the above

areas.

A lower-hybrid antenna system operating at 800 MHz with peak power levels

of P = 150 kW has been in operation on Versator over the past year. The system

has the flexibility to employ either a four-waveguide array grill launching high-

parallel-phase-velocity waves appropriate for ion heating, or a six-waveguide

array launching low-phase-velocity waves appropriate for electron absorption.

Injection of rf power into tokamaks with phased-array waveguide grills is

known to be advantageous from a reactor standpoint. The stainless-steel compo-

nents should be relatively damage-resistant in the reactor environment with its

consequent neutron and heat fluxes. However, the presence of plasma in or near

the waveguide, neutral gas, ionizing radiation, and a strong field in the wave-

guides leads to the possibility of a power-transmission limit due to waveguide

breakdown. One of the important questions addressed in the Versator lower-hybrid

experiment is the technology involved in power transmission in this nonideal sit-

uation.

Progress in these techniques over the past year has led to injection-power
2levels in the range of 60-100 kW with power densities of up to 0.8 kW/cm without

evidence of plasma formation or breakdown. To reach these power levels, care

must be taken in the surface preparation and vacuum cleanliness of the waveguide

array. In-situ vacuum baking at 100-1500 C, and in-situ titanium coating have

been found useful in addition to rf pulse processing of the system. Furthermore,

it is found that rf power transmission is seriously degraded in tokamak discharges

with high impurity levels. As surface preparation techniques are further refined,
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we expect further improvement in the power-handling capability of the waveguide

systems. However, progress in this area has allowed high-power experiments to

begin on Versator during the past year.

Results of lower-hybrid injection at high-power levels occur in two broad

parameter ranges shown in Fig. XX-1. In high-density, high-current discharges,

charge-exchange spectroscopy shows the formation of a high-energy ion tail (Fig.

XX-2). So far, Doppler width measurements of ion-impurity spectral lines has

shown no bulk ion heating. 7  Further experiments are planned to study the pa-

rameter dependence of the ion tail formation, and an upgrade of the charge-

exchange spectrometer is planned to allow detection of high-energy ions in the

interesting energy range of 1-10 keV.

In the low-density, low-current regime, rf injection causes loop-voltage

decreases and current increases not seen at high density.8 These effects are

shown in Fig. XX-3, These experiments have also shown a clear dependence of the

effects on array phasing. On general grounds, these effects could be caused by

PARAMETER RANGES IN THE VERSATOR LOWER-HYBRID EXPERIMENTS

1014

ION
TAIL

1013 -

CURRENT RISE

CL VOLTAGE DROP

HARD X-RAYS

1012 L 
I

20 30 40 50

PLASMA CURRENT KILOAMPS

Fig. XX-1. Parameter ranges of Versator lower-hybrid experiments,

PR No. 123 132



500

ION ENERGY (eV)

Fig. XX-2.

Charge-exchange spectroscopy
formation of high-energy ion
during lower-hybrid rf inject
high density.

shows
tail

ion at

RF ON

- RF OFF

Fig. XX-3.

Loop-voltage drops and plasma-
current increases are observ-
ed in low-density plasmas dur-
ing lower-hybrid injection.

TIME msec

PR No. 123

1000

I dN
JE dE

kA
30-

20- 40

0- 2C

10 20

5 - 10

O L o

133



(XX. PLASMA DYNAMICS)

VERSATOR ECH TRANSMISSION SYSTEM
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Fig. XX-4. ECH power-transmission system.

actual generation of a current by wave absorption; however, other interpretations

cannot be ruled out as yet; in particular, heating and modification of the tem-

perature profile could produce similar changes in plasma current and voltage. Ex-

periments in the coming year will concentrate on distinguishing these possibil-

ities and investigating other interpretations.

Electron-Cyclotron Heating

The electron-cyclotron heating (ECH) experiment at Versator II is a coopera-

tive program with the Naval Research Laboratory. The microwave source developed

and constructed at NRL is a gyrotron capable of producing 100 kW of rf power at

35 GHz with l0-msec pulse duration. For these experiments, an rf transmission

system and injection antenna have been installed on Versator.9 The system, shown

in Fig. XX-4, will be used to study basic physics questions of ECH including:

antenna design and optimization, and polarization and propagation-angle depen-

dence of wave absorption; also, the possibilities of heating at the second-cyclo-

tron harmonic and plasma preionization experiments can be investigated.

Preliminary experimental results have been obtained in the last month of
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1980 showing a decrease in loop voltage and decrease in line average density

injection of power at the fundamental cyclotron-resonance frequency.
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We produce a plasma with Ti >150eV n > 1012, in a min-B mirror system. The

plasma is produced by a so-called "washer gun," located in a guide field about

2 m from the mirror. After, or during injection, we heat the plasma by ion cyclo-

tron resonance (-100 kW at 4-5 MHz) to values of T. > 500 eV. The fluctuations and
1

instabilities of the resultant plasma are the objects of our study.

During the coming year we will investigate the production of a sloshing ion

distribution by ICHR, and the properties of a hot-cathode plasma gun.
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