34 research outputs found

    Target Sequence Capture of Nuclear-Encoded Genes for Phylogenetic Analysis in Ferns

    Get PDF
    Premise of the Study Until recently, most phylogenetic studies of ferns were based on chloroplast genes. Evolutionary inferences based on these data can be incomplete because the characters are from a single linkage group and are uniparentally inherited. These limitations are particularly acute in studies of hybridization, which is prevalent in ferns; fern hybrids are common and ferns are able to hybridize across highly diverged lineages, up to 60 million years since divergence in one documented case. However, it not yet clear what effect such hybridization has on fern evolution, in part due to a paucity of available biparentally inherited (nuclear‐encoded) markers. Methods We designed oligonucleotide baits to capture 25 targeted, low‐copy nuclear markers from a sample of 24 species spanning extant fern diversity. Results Most loci were successfully sequenced from most accessions. Although the baits were designed from exon (transcript) data, we successfully captured intron sequences that should be useful for more focused phylogenetic studies. We present phylogenetic analyses of the new target sequence capture data and integrate these into a previous transcript‐based data set. Discussion We make our bait sequences available to the community as a resource for further studies of fern phylogeny

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    Gametophyte Ecology of the American Hart’s-Tongue Fern: Effects of Temperature and Calcium Availability

    No full text
    This study investigated the gametophyte ecology and physiology of the American hart’s-tongue fern, Phyllitis scolopendrium var. americana. A federally-listed threatened species, the fern is native to eastern North America and found only in lime sinks and glacial plunge ravines with calcium-rich substrates. Greater than ninety percent of the approximately 4000 plants remaining in the United States are found in two counties in central New York, where populations have declined dramatically in recent years. The goal of this work was to generate an improved understanding of potential reasons for the species’ decline through study of its ecology. Gametophytes were grown at 20°C and 25°C and in low-(2.5g/L), medium-(5g/L), and high-(7.5g/L) calcium treatments. Spore germination was of the Vittaria-type, and prothallial plate formation was of the Aspidium-type. Germination rates were similar in all treatments, but growth was significantly slowed in the 25°C, with gametophytes remaining in the protonemal stage of development indefinitely. Calcium affected sexual development, with gametophytes grown in the high-calcium treatments developing gametangia earlier and having higher sporophyte recruitment rates (13.9%) than those grown in medium-(2.3%) or lowcalcium (0.3%) treatments. These findings suggest that P. scolopendrium is particularly susceptible to the effects of climate change and habitat disturbance, and may be outcompeted by other species on account of its slow growth, limited reproductive potential, and extreme habitat specificity

    Data from: On the widespread capacity for and functional significance of extreme inbreeding in ferns

    No full text
    Homosporous vascular plants utilize three different mating systems, one of which, gametophytic selfing, is an extreme form of inbreeding only possible in homosporous groups. This mating system results in complete homozygosity in all progeny and has important evolutionary and ecological implications. Ferns are the largest group of homosporous land plants, and the significance of extreme inbreeding for fern evolution has been the subject of debate for decades. We cultured gametophytes in the laboratory and quantified the relative frequencies of sporophyte production from isolated and paired gametophytes, and examined associations between breeding systems and several ecological and evolutionary traits. The majority of fern species studied show a capacity for gametophytic selfing, producing sporophytes from both isolated and paired gametophytes. While we did not follow sporophytes to maturity to investigate potential detrimental effects of homozygosity at later developmental stages, our results suggest that gametophytic selfing may have greater significance for fern evolution and diversification than has previously been realized. We present evidence from the largest study of mating behavior in ferns to date that capacity for extreme inbreeding is prevalent in this lineage, and we discuss its implications and relevance and make recommendations for future studies of fern mating systems

    Phylogenomic evolutionary insights in the fern family Gleicheniaceae

    Full text link
    The pantropical fern family Gleicheniaceae comprises approximately 157 species. Seven genera are currently recognized in the family, although their monophyly is still uncertain due to low sampling in phylogenetic studies. We examined the monophyly of the genera through extended sampling, using the first phylogenomic inference of the family including data from both nuclear and plastid genomes. Seventy-six samples were sequenced (70 Gleicheniaceae species and six outgroups) using high throughput sequencing, including all seven currently recognized genera. Plastid and nuclear data were recovered and assembled; the nuclear data was phased to reduce paralogy as well as hybrid noise in the final recovered topology. Maximum likelihood trees were built for each locus, and a concatenated dataset was built for both datasets. A species tree based on a multispecies coalescent model was generated, and divergence time analyses performed. We here present the first genomic phylogenetic inferences concerning Gleicheniaceae, confirming the monophyly of most genera except Sticherus, which we recovered as paraphyletic. Although most of the extant genera of Gleicheniaceae originated during the Mesozoic, several genera show Neogene and even Quaternary diversifications, and our results suggest that reticulation and polyploidy may have played significant roles during this diversification. However, some genera, such as Rouxopteris and Stromatopteris, appear to represent evolutionary relicts

    A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses

    No full text
    Lycopodiaceae are one of three surviving families of lycopsids, a lineage of vascular plants with a fossil history dating to at least the Early Devonian or perhaps the Late Silurian (c. 415 Ma). Many fossils have been linked to crown Lycopodiaceae, but the lack of well-preserved material has hindered definitive recognition of this group in the paleobotanical record. New, exceptionally well-preserved permineralized lycopsid fossils from the Early Cretaceous (125.6 ± 1.0 Ma) of Inner Mongolia, China, were examined in detail using acetate peel and micro-computed tomography techniques. The anatomy of extant Lycopodiaceae was analyzed for comparison using fluorescence microscopy. Phylogenetic relationships of the new fossil to extant Lycopodiaceae were evaluated using parsimony and maximum likelihood analyses. Lycopodicaulis oellgaardii gen. et sp. nov. provides the earliest unequivocal and best-documented evidence of crown Lycopodiaceae and Lycopodioideae, based on anatomically-preserved fossil material. Recognition of Lycopodicaulis in Asia during the Early Cretaceous indicates the presence of crown Lycopodiaceae at this time, and striking similarities of stem anatomy with extant species provide a framework for the understanding of the interaction of branching and vascular anatomy in crown-group lycopsids
    corecore