2,296 research outputs found
Diamonds in HD 97048
We present adaptive optics high angular resolution (\sim0\farcs1)
spectroscopic observations in the 3 m region of the Herbig Ae/Be star HD
97048. For the first time, we spatially resolve the emission in the diamond
features at 3.43 and 3.53 m and in the adjacent continuum. Using both the
intensity profiles along the slit and reconstructed two-dimensional images of
the object, we derive full-width at half-maximum sizes consistent with the
predictions for a circumstellar disk seen pole-on. The diamond emission
originates in the inner region ( AU) of the disk.Comment: ApJLetter, in pres
CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk
We present CARMA 1.3 mm continuum data of the disk surrounding the young
brown dwarf 2MASS J044427+2512 in the Taurus molecular cloud. The high angular
resolution of the CARMA observations (0.16 arcsec) allows us to spatially
resolve for the first time the thermal emission from dust around a brown dwarf.
We analyze the interferometric visibilities and constrain the disk outer radius
adopting disk models with power-law radial profiles of the dust surface
density. In the case of a power-law index equal to or lower than 1, we obtain a
disk radius in the range of about 15 - 30 AU, while larger disks are inferred
for steeper radial profiles. By combining this information on the disk spatial
extent with the sub-mm spectral index of this source we find conclusive
evidence for mm-sized grains, or larger, in this brown dwarf disk. We discuss
the implications of our results on the models of dust evolution in
proto-planetary disks and brown dwarf formation.Comment: 14 pages, 3 figures, Accepted for publication in ApJ Letter
X-Shooter study of accretion in -Ophiucus: very low-mass stars and brown dwarfs
We present new VLT/X-Shooter optical and NIR spectra of a sample of 17
candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived
SpT and Av for all the targets, and then we determined their physical
parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or
close to the hydrogen-burning limit. Using the intensity of various emission
lines present in their spectra, we determined the Lacc and Macc for all the
objects. When compared with previous works targeting the same sample, we find
that, in general, these objects are not as strongly accreting as previously
reported, and we suggest that the reason is our more accurate estimate of the
photospheric parameters. We also compare our findings with recent works in
other slightly older star-forming regions to investigate possible differences
in the accretion properties, but we find that the accretion properties for our
targets have the same dependence on the stellar and substellar parameters as in
the other regions. This leads us to conclude that we do not find evidence for a
different dependence of Macc with M* when comparing low-mass stars and BDs.
Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in
some of our recent works in other star-forming regions, and no significant
differences in Macc due to different ages or properties of the regions. The
latter result suffers, however, from low statistics and sample selection biases
in the current studies. The small scatter in the Macc-M* correlation confirms
that Macc in the literature based on uncertain photospheric parameters and
single accretion indicators, such as the Ha width, can lead to a scatter that
is unphysically large. Our studies show that only broadband spectroscopic
surveys coupled with a detailed analysis of the photospheric and accretion
properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract
shortened to fit arXiv constraint
A haptic-enabled multimodal interface for the planning of hip arthroplasty
Multimodal environments help fuse a diverse range of sensory modalities, which is particularly important when integrating the complex data involved in surgical preoperative planning. The authors apply a multimodal interface for preoperative planning of hip arthroplasty with a user interface that integrates immersive stereo displays and haptic modalities. This article overviews this multimodal application framework and discusses the benefits of incorporating the haptic modality in this area
IRAS 18511+0146: a proto Herbig Ae/Be cluster?
Context: The evolution of a young protocluster depends on the relative
spatial distributions and dynamics of both stars and gas. Aims: We study the
distribution and properties of the gas and stars surrounding the luminous (10^4
L_sun) protocluster IRAS 18511+0146. Methods: IRAS 18511+0146 and the cluster
associated with it has been investigated using the sub-millimetre (JCMT-SCUBA),
infrared (Spitzer-MIPSGAL, Spitzer-GLIMPSE, Palomar) and radio (VLA) continuum
data. Cluster simulations have been carried out in order to understand the
properties of clusters as well as to compare with the observations. Results:
The central most obscured part of the protocluster coincident with the compact
sub-millimetre source found with SCUBA is responsible for at least 2/3 of the
total luminosity. A number of cluster members have been identified which are
bright in mid infrared and show rising (near to mid infrared) spectral energy
distributions suggesting that these are very young stellar sources. In the mid
infrared 8.0 micron image, a number of filamentary structures and clumps are
detected in the vicinity of IRAS 18511+0146. Conclusions: Based on the
luminosity and cluster size as well as on the evolutionary stages of the
cluster members, IRAS 18511+0146 is likely to be protocluster with the most
massive object being a precursor to a Herbig type star.Comment: Accepted by the Astronomy and Astrophysics (23 Pages, 5 Tables, 12
Figures
Stellar masses and disk properties of Lupus young stellar objects traced by velocity-aligned stacked ALMA 13CO and C18O spectra
In recent ALMA surveys, the gas distributions and velocity structures of most
of the protoplanetary disks can still not be imaged at high S/N due to the
short integration time. In this work, we re-analyzed the ALMA 13CO (3-2) and
C18O (3-2) data of 88 young stellar objects in Lupus with the velocity-aligned
stacking method to enhance S/N and to study the kinematics and disk properties
traced by molecular lines. This method aligns spectra at different positions in
a disk based on the projected Keplerian velocities at their positions and then
stacks them. This method enhances the S/N ratios of molecular-line data and
allows us to obtain better detections and to constrain dynamical stellar masses
and disk orientations. We obtain 13CO detections in 41 disks and C18O
detections in 18 disks with 11 new detections in 13CO and 9 new detections in
C18O after applying the method. We estimate the disk orientations and the
dynamical stellar masses from the 13CO data. Our estimated dynamical stellar
masses correlate with the spectroscopic stellar masses, and in a subsample of
16 sources, where the inclination angles are better constrained, the two masses
are in a good agreement within the uncertainties and with a mean difference of
0.15 Msun. With more detections of fainter disks, our results show that high
gas masses derived from the 13CO and C18O lines tend to be associated with high
dust masses estimated from the continuum emission. Nevertheless, the scatter is
large (0.9 dex), implying large uncertainties in deriving the disk gas mass
from the line fluxes. We find that with such large uncertainties it is expected
that there is no correlation between the disk gas mass and the mass accretion
rate with the current data. Deeper observations to detect disks with gas masses
<1E-5 Msun in molecular lines are needed to investigate the correlation between
the disk gas mass and the mass accretion rate.Comment: Submitted to A&
A UV-to-MIR monitoring of DR Tau: exploring how water vapor in the planet formation region of the disk is affected by stellar accretion variability
Young stars are known to show variability due to non-steady mass accretion
rate from their circumstellar disks. Accretion flares can produce strong
energetic irradiation and heating that may affect the disk in the planet
formation region, close to the central star. During an extreme accretion
outburst in the young star EX Lupi, the prototype of EXor variables, remarkable
changes in molecular gas emission from AU in the disk have recently
been observed (Banzatti et al. 2012). Here, we focus on water vapor and explore
how it is affected by variable accretion luminosity in T Tauri stars. We
monitored a young highly variable solar-mass star, DR Tau, using simultaneously
two high/medium-resolution ESO-VLT spectrographs: VISIR at 12.4 m to
observe water lines from the disk, and X-shooter covering from 0.3 to 2.5
m to constrain the stellar accretion. Three epochs spanning timescales
from several days to several weeks were obtained. Accretion luminosity was
estimated to change within a factor , and no change in water emission
was detected at a significant level. In comparison to EX Lupi and EXor
outbursts, DR Tau suggests that the less long-lived and weaker variability
phenomena typical of T Tauri stars may leave water at planet-forming radii in
the disk mostly unaffected. We propose that these systems may provide evidence
for two processes that act over different timescales: UV photochemistry in the
disk atmosphere (faster) and heating of the disk deeper layers (slower).Comment: 8 pages, 7 figures, accepted for publication in The Astrophysical
Journa
Photoevaporation of Circumstellar Disks due to External FUV Radiation in Stellar Aggregates
When stars form in small groups (N = 100 - 500 members), their circumstellar
disks are exposed to little EUV radiation but a great deal of FUV radiation
from massive stars in the group. This paper calculates mass loss rates for
circumstellar disks exposed to external FUV radiation. Previous work treated
large disks and/or intense radiation fields in which the disk radius exceeds
the critical radius (supercritical disks) where the sound speed in the FUV
heated layer exceeds the escape speed. This paper shows that significant mass
loss still takes place for subcritical systems. Some of the gas extends beyond
the disk edge (above the disk surface) to larger distances where the
temperature is higher, the escape speed is lower, and an outflow develops. The
evaporation rate is a sensitive function of the stellar mass and disk radius,
which determine the escape speed, and the external FUV flux, which determines
the temperature structure of the flow. Disks around red dwarfs are readily
evaporated and shrink to disk radii of 15 AU on short time scales (10 Myr) when
exposed to moderate FUV fields with = 3000. Although disks around solar
type stars are more durable, these disks shrink to 15 AU in 10 Myr for intense
FUV radiation fields with = 30,000; such fields exist in the central 0.7
pc of a cluster with N = 4000 stars. If our solar system formed in the presence
of such strong FUV radiation fields, this mechanism could explain why Neptune
and Uranus in our solar system are gas poor, whereas Jupiter and Saturn are gas
rich. This mechanism for photoevaporation can also limit the production of
Kuiper belt objects and can suppress giant planet formation in sufficiently
large clusters, such as the Hyades, especially for disks associated with low
mass stars.Comment: 49 pages including 12 figures; accepted to Ap
X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars
Disks around T Tauri stars are known to lose mass, as best shown by the
profiles of forbidden emission lines of low ionization species. At least two
separate kinematic components have been identified, one characterised by
velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity
of few km/s (LVC). The HVC are convincingly associated to the emission of jets,
but the origin of the LVC is still unknown. In this paper we analyze the
forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus
and -Ori observed with the X-Shooter ESO spectrometer. We detect
forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and
characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We
focus our study on the LVC. We show that there is a good correlation between
line luminosity and both L and the accretion luminosity (or the
mass-accretion rate) over a large interval of values (L L; L L;
M/yr). The lines show the presence of a slow
wind ( cm), warm (T K), mostly neutral. We estimate the mass of the emitting gas and
provide a value for the maximum volume it occupies. Both quantities increase
steeply with the stellar mass, from M and
AU for M M, to
M and AU for M M, respectively.
These results provide quite stringent constraints to wind models in low mass
young stars, that need to be explored further
- …
