133 research outputs found

    Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity

    Get PDF
    Vibrio cholerae remains a major global health threat, disproportionately impacting parts of the world without adequate infrastructure and sanitation resources. In aquatic environments, V. cholerae exists both as planktonic cells and as biofilms, which are held together by an extracellular matrix. V. cholerae biofilms have been shown to be hyperinfective, but the mechanism of hyperinfectivity is unclear. Here we show that biofilm-grown cells, irrespective of the surfaces on which they are formed, are able to markedly outcompete planktonic-grown cells in the infant mouse. Using an imaging technique designed to render intestinal tissue optically transparent and preserve the spatial integrity of infected intestines, we reveal and compare three-dimensional V. cholerae colonization patterns of planktonic-grown and biofilm-grown cells. Quantitative image analyses show that V. cholerae colonizes mainly the medial portion of the small intestine and that both the abundance and localization patterns of biofilm-grown cells differ from that of planktonic-grown cells. In vitro biofilm-grown cells activate expression of the virulence cascade, including the toxin coregulated pilus (TCP), and are able to acquire the cholera toxin-carrying CTXФ phage. Overall, virulence factor gene expression is also higher in vivo when infected with biofilm-grown cells, and modulation of their regulation is sufficient to cause the biofilm hyperinfectivity phenotype. Together, these results indicate that the altered biogeography of biofilm-grown cells and their enhanced production of virulence factors in the intestine underpin the biofilm hyperinfectivity phenotype

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    The formation of human populations in South and Central Asia

    Get PDF
    By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages

    Sleep-disordered breathing-do we have to change gears in heart failure?

    No full text
    The majority of patients with heart failure have sleep-disordered breathing (SDB)-with central (rather than obstructive) sleep apnoea becoming the predominant form in those with more severe disease. Cyclical apnoeas and hypopnoeas are associated with sleep disturbance, hypoxaemia, haemodynamic changes, and sympathetic activation. Such patients have a worse prognosis than those without SDB. Mask-based therapies of positive airway pressure targeted at SDB can improve measures of sleep quality and partially normalise the sleep and respiratory physiology, but recent randomised trials of cardiovascular outcomes in central sleep apnoea have been neutral or suggested the possibility of harm, likely from increased sudden death. Further randomised outcome studies (with cardiovascular mortality and hospitalisation endpoints) are required to determine whether mask-based treatment for SDB is appropriate for patients with chronic systolic heart failure and obstructive sleep apnoea, for those with heart failure with preserved ejection fraction, and for those with decompensated heart failure. New therapies for sleep apnoea-such as implantable phrenic nerve stimulators-also require robust assessment. No longer can the surrogate endpoints of improvement in respiratory and sleep metrics be taken as adequate therapeutic outcome measures in patients with heart failure and sleep apnoea

    The Cultural Project : Formal Chronological Modelling of the Early and Middle Neolithic Sequence in Lower Alsace

    Get PDF
    Starting from questions about the nature of cultural diversity, this paper examines the pace and tempo of change and the relative importance of continuity and discontinuity. To unravel the cultural project of the past, we apply chronological modelling of radiocarbon dates within a Bayesian statistical framework, to interrogate the Neolithic cultural sequence in Lower Alsace, in the upper Rhine valley, in broad terms from the later sixth to the end of the fifth millennium cal BC. Detailed formal estimates are provided for the long succession of cultural groups, from the early Neolithic Linear Pottery culture (LBK) to the Bischheim Occidental du Rhin Supérieur (BORS) groups at the end of the Middle Neolithic, using seriation and typology of pottery as the starting point in modelling. The rate of ceramic change, as well as frequent shifts in the nature, location and density of settlements, are documented in detail, down to lifetime and generational timescales. This reveals a Neolithic world in Lower Alsace busy with comings and goings, tinkerings and adjustments, and relocations and realignments. A significant hiatus is identified between the end of the LBK and the start of the Hinkelstein group, in the early part of the fifth millennium cal BC. On the basis of modelling of existing dates for other parts of the Rhineland, this appears to be a wider phenomenon, and possible explanations are discussed; full reoccupation of the landscape is only seen in the Grossgartach phase. Radical shifts are also proposed at the end of the Middle Neolithic
    corecore