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Abstract 9 

The Neolithic and the spread of agriculture saw several introductions of insect species 10 

associated with the environments and activities of the first farmers. Fossil insect research 11 

from the Neolithic lake settlement of Dispilio in Macedonia, northern Greece, provides 12 

evidence for the early European introduction of a flightless weevil, the granary weevil, 13 

Sitophilus granarius, which has since become cosmopolitan and one of the most important 14 

pests of stored cereals. The records of the granary weevil from the Middle Neolithic in 15 

northern Greece illuminate the significance of surplus storage for the spread of agriculture. 16 

The granary weevil and the house fly, Musca domestica were also introduced in the Neolithic 17 

of central Europe, with the expansion of Linear Band Keramik (LBK) culture groups. This 18 

paper reviews Neolithic insect introductions in Europe, including storage pests, discusses 19 

their distribution during different periods and the reasons behind the trends observed. Storage 20 

farming may be differentiated from pastoral farming on the basis of insect introductions 21 

arriving with incoming agricultural groups. 22 

 23 
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 26 

Introduction 27 

The beginnings of the Neolithic cultural evolution in Europe are associated with the 28 

introduction of crop plants and domestic animals from the Near East, movement of human 29 

populations (Fernandez et al. 2014; Burger and Thomas 2011) and forest clearance (Fyfe et 30 

al. 2015). Climate change has been advanced by some researchers as one of the drivers 31 

behind the timing and the scale of change and the reason behind mobility of farming groups 32 

(Bar Yosef 2011; Richerson et al. 2001). However separating cultural choice from climate 33 

induced change during the Holocene is near impossible, if nothing else because preservation, 34 

taphonomy and the nature of the archaeological record rarely allow for exact correlation of 35 

events.  Discussions have centred on typology of artefacts (Yerkes et al. 2012), the spread of 36 

cereal crops (Colledge et al. 2013; Fuller 2007), found mostly as charred seeds from 37 

Neolithic archaeological sites in Eurasia, morphological change in animal bones, and recently 38 

phylogenetic and isotopic data linked with early domestication (Brown et al. 2008; Bramanti 39 

et al. 2009; Larson and Fuller 2014).  Currently research is primarily focussed on analytical 40 

methods and the modelling of existing data, although the eventual closure of gaps in datasets, 41 

in terms of  data from under-researched regions and chronological and taphonomic biases, 42 

may undermine any overviews. Studies on fossil insects, particularly invasive pest species, 43 

which take a significant toll on production, and their biogeography in relation to the 44 

expansion of agriculture, are few compared to research upon plants, whether pollen or 45 

macrofossils, and domestic animals.  This paper presents new insect evidence from the 46 

Neolithic settlement at Dispilio in northern Greece, reviews the Neolithic record of insect 47 

introductions which coincide with the introduction of farming, and discusses the spread of 48 

early agriculture providing a perspective based primarily on fossil insect data. 49 

Dispilio 50 

The archaeological site at Dispilio (Lat. 40°29′7″N; Long. 21°17′22″E), lies on the southern 51 

shore of lake Orestias, 7 km south of  Kastoria in northern Greece (Fig. 1). The lake is at 627 52 

m a.s.l., and is drained by the Aliakmon river to the south.   The mean temperature during 53 

July is 21.4 °C and during January 1 °C, and annual precipitation is between 563 and 876 mm 54 

with maxima in December and May. On the lake shore wetland environments are dominated 55 

by reeds Phragmites australis (Cav.) and bullrush, Typha sp., as well as other  aquatic plants 56 
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(e.g. Nyphaea alba H., Trapa natans L., Myriophyllum sp.).  Oaks, Quercus, Elm, Ulmus, 57 

willows, Salix, poplar, Populus, beech, Fagus, and plane, Platanus, form the tree cover of the 58 

area around the lake.   59 

The site was discovered by Keramopoulos (1932), and fifty years later, excavations were 60 

initiated by G. Hourmouziadis, who continued work until his death in late 2013. Dispilio was 61 

inhabited from the early Middle Neolithic (ca. 5800 - 5300 BC) through to the Early Bronze 62 

Age (3200 - 2100 BC) (Hourmouziadis 1996, 2002; Sofronidou 2008). The dwellings around 63 

the lake were built on wooden piles which are still preserved in parts of the excavation (Fig. 64 

2). Wooden trackways were also in use, probably to facilitate movement around the lake 65 

shores.  Alongside Neolithic pottery, a variety of organic remains including charcoal, seeds, 66 

bones and leather were recovered from the different phases of occupation on site 67 

(Hourmouziadis 2002, 2006).  Perhaps one of the most significant finds, still to be published 68 

in detail, is a wooden tablet with linear script, dated to ca. 5300 BC (Hourmouziadis  1996; 69 

Facorellis et al. 2014), which provides some of the earliest evidence for writing in Europe.   70 

Palynology has shown that Abies, fir, Pinus, pine, Fagus, beech, Carpinus, hornbeam, Tilia, 71 

lime, and Juglans, walnut, were present in the region from 7500 years ago. Disturbance of the 72 

woodland, although small scale initially, coincided with the beginning of the settlement 73 

(Koulis and Dermitzakis 2008). Other palaeoenvironmental research at Dispilio includes 74 

bones of terrestrial animals (Phoca Cosmetatou 2008), fish bones (Theodoropolou 2008), 75 

molluscs (Veropoulidou 2009) and plant remains, including charred seeds (Mangafa 2002), 76 

wood (Ntinou 2010), and phytoliths (Tsartsidou 2010). Geoarchaeological research has 77 

provided information on the nature of the sediments and the site’s environmental setting 78 

(Karkanas et al. 2011). The sudden death of Hourmouziadis in 2013 resulted in the 79 

interruption of the site excavation.  Although a final report has yet to be written, the 80 

indications from the environmental research are of a settlement at a location strategic for the 81 

exploitation of a range of diverse resources.  82 

Methodology 83 

In October 2010, sampling was undertaken to evaluate the potential of Dispilio for the study 84 

of insect remains. A section was cleared in the western corner of the Eastern Sector (Fig. 3) 85 

to enable the recovery of bulk (5 litre) samples for analysis of insects. A total of twelve 86 

blocks (S1-S12) were cut in a vertical succession of 50 mm slices (Fig. 4). As it was evident 87 
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that the upper exposed sediments had dried out and there was minimal chance for 88 

preservation of insects, sampling began at 140 cm from the modern surface. The basal sample 89 

of the section encompassed the top of the underlying sediment, before the initial occupation 90 

next to the lake. The stratigraphy of the profile was correlated with the dated profile recorded 91 

by Karkanas et al. (2011) from a different part of the East  Sector.  The samples were sealed 92 

in polythene bags in the field and returned to the laboratory for processing and sorting. 93 

Processing followed the technique originally devised by Coope and Osborne (1968). The 94 

samples were disaggregated in warm water and poured onto a 300 μm sieve. The coarser 95 

fraction, which was retained on the sieve, was drained and returned to a bucket where 96 

paraffin (kerosene) was added and worked into the sample. The light oil adsorbs onto the 97 

cuticle of arthropod remains, and as a result when cold water is added the insect remains 98 

float. Flotation was repeated three times for each sample, and the material floated was 99 

washed with detergent and hot water to remove the paraffin, and then with alcohol (IMS). 100 

Sorting was carried out under a binocular microscope, and the individual insect sclerites 101 

recovered were stored in 70% ethanol.  Preservation was poor and the limited material 102 

recovered from the four basal samples was very fragmented. In addition to the bulk sample 103 

dates obtained by Karkanas et al. (2011), an AMS radiocarbon date was obtained from the 104 

basal sample of the section.  105 

 106 

Results and Discussion 107 

Sitophilus granarius, Dispilio and other Neolithic insect records 108 

 109 

From the samples processed, few insect remains were recovered and these were retrieved 110 

primarily from the basal samples. Although waterlogging of the site should have led to 111 

optimal preservation, the drainage of the area prior to excavation and its rewetting during 112 

winters had led to the destruction of much of the organic material (see Fig. 2). Nevertheless, 113 

small fragments of uncharred wood, molluscan fragments, fish bones, large pieces of 114 

charcoal and a few insect fragments survived. The insect remains from the basal sample, S12, 115 

were very fragmented and the bulk of the assemblage comprised of elytra of reed beetles, 116 

Plateumaris spp.  The genus is typical of semi-aquatic environments, and can be found on 117 

reeds, rushes and other aquatic plants, although one species, Plateumaris discolor (Panzer) is 118 

more characteristic of acid mires (Cox 2007). As well as the wetland fauna, three elytra of the 119 
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cereal pest Sitophilus granarius (L.) were recovered from this sample. A similar pattern 120 

emerged from samples 11, 10 and 9 with single sclerites of S. granarius present from samples 121 

10 and 9; there was no preservation in samples from the upper part of the section. 122 

 123 

S. granarius although flightless is now cosmopolitan, having been transported by humans 124 

with cereals to even the most isolated parts of the world (Hill 1975). The beetle has its origins 125 

in the Fertile Crescent probably in nests of rodents (Buckland 1981) and it is a storage, as 126 

opposed to a field pest.  It requires temperatures from 20-32 °C for oviposition and moisture 127 

below 12% (Birch 1944). Although cold hardy (Solomon and Adamson 1955), in regions 128 

with colder climate it survives only indoors in heated buildings. In cases where there are no 129 

significant resident populations of the weevil, frequent reintroductions of infested cereals are 130 

needed to maintain populations, which may provide evidence for centralised storage, trade 131 

networks and frequent supplies of infested grain.  132 

An AMS radiocarbon date of 7730 to 7670 cal BP (5780 to 5720 cal BC) from a piece of 133 

black pine, Pinus nigra Arn., was obtained from the basal sample of the section, S12. This 134 

coincides with the beginning of the settlement, according to Hourmouziadis (2006), at the 135 

beginning of the middle Neolithic around 5800 BC. The granary weevil specimens from the 136 

basal sample are the earliest fossil records of the species from Europe and indicate its early 137 

introduction to northern inland Greece. 138 

Further east, Helbaek (1970) notes Sitophilus sp. from Haçilar in Asiatic Turkey around 7500 139 

(uncalibrated) BP (= ca. 6400 cal BC). S. granarius has been recorded from the Pre Pottery 140 

Neolithic C (PPNC) period site at Atlit Yam, near Haifa on the coast of Israel in a well of ca. 141 

6200 cal BC (Kislev et al. 2004) (Fig. 5, Table 1).  In addition to the Dispilio record, other 142 

Neolithic early records from Europe include evidence from the sites of Eythra, ca. 5250 143 

BC(Schmidt 2004), Erkelenz-Kückhoven ca. 5057 BC (Schmidt 1998) and Plaussig ca. 5250 144 

BC (Schmidt 2013) associated with the Linear Band Keramik (LBK), a culture which took its 145 

name from the linear decorated  pottery associated with it. A further LBK site with S. 146 

granarius from Göttingen (Büchner and Wolf 1997) in the same region of Germany dates to 147 

ca 4935–4800 BC.  In northern Greece, during the late Neolithic at Servia (ca. 4500 - 4200 148 

BC) the species is preserved in the form of imprints in pottery (Hubbard 1979: 227) (see Fig. 149 

5, Table 1), and there is an Early Cycladic (3200-2200 BC) record of S. granarius from 150 

Akrotiri (Panagiotakopulu, in press).  There are other early Mediterranean records from 151 
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Egypt. Solomon (1965) notes it from barley deposited in a pharaonic tomb beneath the Step 152 

Pyramid of Saqqarah about 2300 BC and Helbaek (in op. cit.) notes further specimens of 153 

Sitophilus sp. 600 years older from another tomb at Saqqarah. Chaddick and Leek (1972) 154 

provide a record from the 6th Dynasty (ca. 2323–2150 BC) tomb of Queen Ichetis at the 155 

same site, and there is a 10
th

 Century BC record from Tel Arad in Israel (Hopf and Zachariae 156 

1971). 157 

Two congeners, Sitophilus oryzae (L.) and S. zeamais Mots., probably have their origins 158 

further east in Asia. In contrast to S. granarius, they are both capable fliers (Fogliazza and 159 

Pagani 1993), and as a result, they can be pests in the field as well as the storeroom (Plarre 160 

2010). The earliest record of the genus, S. zeamais, comes from Japan as imprints on pottery 161 

from deposits of ca. 10500 BP at Sanbonmatsu, Kagoshima, (Obata et al. 2011), whilst for S. 162 

oryzae the earliest record is later, from a Han Dynasty tomb in China of 185 BC (Chu and 163 

Wang 1975). In Europe, its earliest occurrence is in a late medieval deposit in Southampton 164 

(Grove 1995).  165 

In Central Europe, LBK deposits include two more pest species, which are now 166 

cosmopolitan, the spider beetles Niptus hololeucus (Fald.) and Gibbium psylloides (Czen.) 167 

from the site at Eythra, near Leipzig (Schmidt 2013) (see Fig. 5, Table 1). N. hololeucus is a 168 

flightless temperate species which breeds on a range of different materials including faeces 169 

(Koch 1971). Its proposed origin by Zacher (1927), who believed that  the golden spider 170 

beetle was introduced to Europe from the Crimea in the 1830s and spread through trade to 171 

northern Europe and North America, was discussed by Buckland (1976) in connection with 172 

finds from a Roman sewer in York (probably 4th century AD). There are further Roman and 173 

medieval finds, from Bearsden (140 AD - 168 AD) on the Antonine Wall in Scotland  (Locke 174 

2016) and medieval sites at Leicester (1250 AD-1540 AD) in the English Midlands (Girling 175 

1981) and Neuss (30 AD - 60 AD) in the Rhineland (Cymorek and Koch 1969). Its natural 176 

habitat includes nests of birds and those of social Hymenoptera, where it is probably a 177 

scavenger (Howe and Burges 1952). Sporadic accidental introductions by trade and gift 178 

exchange to sites in western Europe, perhaps from West Asia, and local extinctions have been 179 

a feature of this and other relatively thermophilous species throughout the late Holocene.  G. 180 

psylloides shows a similar pattern of fossil records from the Neolithic and later periods in 181 

Europe, occurring in 1st-2nd century Roman deposits at Lattes in Hérault (Ponel et al. 2005) 182 

and early post-medieval Marseilles (Ponel and Yvinec 1997); other fossil records are largely 183 
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Egyptian (Panagiotakopulu 2001). Primarily distributed around the Mediterranean at the 184 

present day, it is found on a range of stored products, although modern records may also 185 

include G. aequinoctiale (Bellés and Halstead 1985), perhaps a more recent introduction of a 186 

vicariant from the New World.  187 

The cadelle beetle, Tenebroides mauritanicus (L.) has been found in LBK deposits at 188 

Erkelenz-Kückhoven (Schmidt 1998) and Plaussig (Schmidt in King et al. 2014) and the 189 

middle Neolithic Grossgartach culture site at Singen Offwiese in deposits of ca. 4500-4000 190 

BC (Schmidt 2007, 2013). Another early record comes from a cave at Wadi Gawasis on the 191 

Red Sea Coast of  Egypt, ca. 1850 BC (Borojevic et al. 2010) and it again appears in a 192 

Roman well at Hanau in  Hesse, Germany (Kenward and Large 1999) and a range of  British  193 

Roman sites northwards to lowland Scotland (Smith 2004). Whilst T. mauritanicus is 194 

believed to have its origins in Africa (Denux and Zagatti 2010), there are records from under 195 

bark in southern Europe (Crowson 1958) and it  may be part of the Palaearctic Urwald (= 196 

primary forest)  insect fauna (sensu Buckland 1979).  Another grain pest, Oryzaephilus 197 

surinamensis (L.), has similar origins and is also first recorded from a late Neolithic site at 198 

Mandalo in Macedonia in deposits of ca. 4500- 4340 cal BC (Valamoti and Buckland 1995).  199 

This, the saw-toothed grain beetle, is now a cosmopolitan pest on cereals, cereal products and 200 

various other commodities (Fogliazza and Pagani 1993; Halstead 1993) It is cold hardy and 201 

in the wild has also been found under bark (Zacher 1927).  202 

As well as the suite of storage pests from the LBK in the Rhineland, Musca domestica, the 203 

house fly, was recovered from Erkelenz-Kückhoven (Schmidt 2010). Its requirement for 204 

elevated temperatures for breeding suggested to Skidmore (1996) that the species has origins 205 

in warmer climes, perhaps the Nile valley. It exploits a variety of environments, but is 206 

primarily associated with the dung of domestic animals (Skidmore 1985). Other early West 207 

European records include Schipluiden in the Netherlands at ca. 3500 BC (Hakbijl 2006) and 208 

Thyangen Weier in Switzerland, from ca. 3500-3000 BC (Nielsen et al. 2000). The species’ 209 

temperature requirements imply that the recovery of house flies puparia from the fields at the 210 

latter site, which lies at nearly 500m above sea level, provides evidence of manuring (Nielsen 211 

et al. 2000), for which there is evidence from other Neolithic sites in artefact distribution (cf. 212 

Radley and Cooper 1968, Guttmann-Bond et al. 2016) and isotopic research on fossil plant 213 

remains (Bogaard  et al. 2013). Neolithic house fly records also include Federsee in southern 214 

Germany, ca. 3000 BC (Schmidt 2004) and the pile dwelling at Alvastra in southern Sweden 215 

ca. 3000 BC, (Skidmore in Lemdahl 1995).  216 
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From 3600 to 2500 cal BC there are records of an additional introduced species, the human 217 

flea, Pulex irritans L.  Two of the four sites with human fleas, are located in France, Saint- 218 

Maximin-la-Sainte-Baume ca. 3600 cal BC (Remicourt et al. 2014) and Chalain ca. 3200 - 219 

2980 cal BC (Yvinec et al. 2000).  In addition to these, there were human flea records from 220 

Shipluiden ca. 3500 cal BC (Hakbijl 2006) and Skara Brae at Orkney ca. 3100 -2500 cal BC 221 

(Buckland and Sadler 1997) (see Fig. 5, Table 1).  222 

Insects, Agropastoralists and the European Neolithic 223 

The beginnings of plant domestication during the Neolithic in south west Asia have been 224 

linked with the importance of storage as a mechanism which facilitated the transition (Kujit 225 

2008). Despite the clear demographic advantages of sedentary communities, able to produce 226 

and support offspring in every year, rather than every 3- 4 years (Sussman 1972), in the 227 

temperate zone, the break point in expansion remains production of an agricultural surplus, 228 

capable of being stored and utilised as both the seed grains and food of the next wave of 229 

colonisers.  It is probable that only with centralised control over surplus was this barrier 230 

effectively broken.  231 

Archaeological information for the initiation of surplus tends to be thin and it is only rarely, 232 

when preservation allows it, that evidence for the use of structures and materials (e.g. mud 233 

bins, sacks, etc.) is recovered. Such evidence for dedicated facilities comes as early as 11000 234 

years ago from Dhra’ in Jordan during the PPNA (Pre Pottery Neolithic A) and involves large 235 

quantities of wild cereals, probably cultivated rather than collected (Kuijt and Finlayson 236 

2009). The less well preserved storage areas enclosed by mud walls from Netiv Hadgud (Bar 237 

Yosef and Gopher 1997) provide an additional example.  238 

Whether the outcome of intensification or a necessity resulting from sedentism and increasing 239 

population numbers, bulk storage marks the origins of a Near Eastern Neolithic which is 240 

based on seven cereal and pulse species: einkorn (Triticum monococcum L.), emmer (T. 241 

turgidum L.), barley (Hordeum vulgare L.), lentil (Lens culinaris Medikus), pea (Pisum 242 

sativum L.), chickpea (Cicer arietinum L.), and bitter vetch (Vicia ervilia L.). By the late 243 

sixth millennium BC, in the southern Levant there is evidence for extensive storage facilities; 244 

Tel Tsaf exemplifies surplus accumulation and points to social complexity and stratification 245 

(Garfinkel et al. 2015). In this context the evidence for S. granarius from the Levantine 246 

PPNC (Kislev et al. 2004) , is relevant as it indicates that  storage of wild plants and 247 
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subsequently cultivated plants was fundamental for  the transition to settled farming 248 

communities. 249 

Research on charred plant remains from aceramic Neolithic sites from southwest Asia and 250 

southeast Europe, in particular the Levantine core area, the Aegean and Cyprus, has shown 251 

on the basis of weed assemblages that farming was probably associated with a wave of 252 

colonisation from the Levant to the Aegean (Colledge et al. 2004). Indeed, the early Neolithic 253 

in the Aegean follows closely the spread of farming along the Levantine coast and the early 254 

Neolithic also includes a similar package of crops (Valamoti and Kotsakis 2007).  255 

Climate, in particular the 8200 BP cold climatic event in the northern hemisphere, has been 256 

considered as the reason for the initial spread of farming into Europe and there is some 257 

discussion about mobility of farmers to the eastern Mediterranean as a result of climate 258 

change (see Weninger et al. 2006).  However, in addition to problems inherent with close 259 

dating of the archaeology, there is evidence for Neolithic sites already established by that 260 

point both in the Levant and the Aegean. This indicates that the spread of agriculture might 261 

have been a more complex affair (Kotsakis 2001). In northern Greece wetlands played a 262 

significant role for settlement (Gkoumas and Karkanas 2016), with several early and middle 263 

Neolithic sites located in proximity to a variety of resources. The early middle Neolithic 264 

record of S. granarius from Dispilio provides evidence for both diffusion and storage, which 265 

in relation to the writing tablet from the site might be pointing to a socially stratified agrarian 266 

society. Although fossil insect assemblages have been little studied on Mediterranean sites, 267 

the additional Neolithic records of S. granarius and O. surinamensis from Macedonia, may 268 

relate to a similar pattern of storage and exchange (see Fig. 5, Table 1). The impact of grain 269 

pests, however, goes beyond the occasional nutty bits in a granary loaf to wholesale 270 

destruction of stored foodstuffs and seed grain. Hoffman (1954) estimated that 5% of French 271 

cereal production before the Second World War was lost to S. granarius alone. Losses are not 272 

evenly distributed and dearth in one region may be accompanied by surplus in another. The 273 

apparent invasion of France by Sitotroga cerealella (Ol.), the Angoumois grain moth, the 274 

subject of an early entomological monograph (du Monceau and Tillet 1762), provides an 275 

example of a serious pest, which lead to famine. Soft-bodied pests, however, are unlikely to 276 

leave a fossil record, although at Masada in Israel, destroyed in AD 73, the Almond Moth, 277 

Ephestia cautella (Walker) is preserved by desiccation (Kislev and Simchoni 2007). Attempts 278 



10 

 

at estimating storage loss and its impact on human communities in the remote past are 279 

therefore highly speculative (cf. Buckland 1978). 280 

In the long debate about acculturation and colonisation, dietary characteristics of different 281 

groups may be significant. Vencl (1986) has argued that the North European model of 282 

acculturation of Mesolithic groups (from around 10000 to 5000 BC) to a settled farming 283 

economy is inappropriate for Central Europe, and the evidence of bone isotope chemistry is 284 

increasingly showing that the dietary division between hunter gatherers and farmers is radical 285 

no matter where it comes from (e.g. Bonsall et al. 2000; Richards et al. 2003).  Several 286 

models, perhaps borne of the end of Mesolithic/transition to Neolithic  Ertebølle sites in the 287 

southern Baltic region, saw amicable co-existence between groups adopting disparate 288 

approaches to the forest and its resources, although ethnographic parallels (e.g. Wolf 1982) 289 

and mass grave evidence revealing traumatic injuries indicate otherwise (Golitko and Keeley 290 

2007). Confronted by an alien herbivore that neither runs away nor expresses surprise at a 291 

hunter, the natural reaction of the latter is to spear and taste it.  Such activity would not 292 

endear him to the farming community, and he and his kin, like any predator on domestic 293 

animals or raiders of the crops, become another item in the farmer’s hit list.  The terminal 294 

confrontation between Yaghan and sheep farmers in Tierra del Fuego after the mid 19th 295 

century (Yesner et al. 2003), or perhaps the Beothuk of Newfoundland, cut off from coastal 296 

resources by European fishermen almost a century earlier (Rowe 1977) provide some of the 297 

latest of many examples. The moving agricultural frontier across Europe must have been very 298 

similar, with many small scale killings, supplemented by the denial of essential resources and 299 

by the hand of new diseases acquired from close association with domestic stock (Wolfe et al. 300 

2007).  301 

From Central Europe evidence comes from the LBK sites (c. 5400 - 4900 BC), which are 302 

clearly very different from those of contemporary cultures in northwest Europe, with large 303 

houses apparently organised into villages. Childe’s (1958) view of an egalitarian Neolithic 304 

may still prevail (e.g. Gomart et al. 2015), although his ideas of temporary occupation and 305 

swidden agriculture has been superseded by one in which settlement continuity is emphasised 306 

(Lüning 1982; Bickle and Whittle 2013). In a study based largely upon the pottery, van de 307 

Velde (1979) tentatively suggested that there was some trace of hierarchy within settlements. 308 

Data on production of lithic artefacts (Zimmermann 1995) and redistribution of raw materials 309 

also show an hierarchical system (Classen and Zimmermann 2004; Hofmann and Bickle 310 
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2009). Most work with plant macrofossils from this period has centred on charred seed 311 

material, which provides only a partial view of plant utilisation.  At Meindling, near 312 

Straubing on the Danube, Bakels (1992, 2009) records six cultivated species: emmer 313 

(Triticum dicoccum Schrank), einkorn, pea, lentil, linseed (Linum usitatissimum L.) and 314 

poppy (Papaver somniferum L.); einkorn dominates over emmer at this locality. This is the 315 

pattern seen elsewhere in Central Europe during this period (see Jacomet 2007). 316 

In the Rhineland, Lüning (1982) has argued that the typical threefold division of the 317 

characteristic longhouses of sites, such as Langweiler, divided living from storage area by 318 

means of a central working area, much after the fashion of later longhouses. These ideas were 319 

abandoned in favour of a model of intensive mixed farming with high labour input in small 320 

plots (Bogaard 2005), which would need large storage areas or hierarchical societies (but see 321 

Müller 2013). However the records of the grain weevil, S. granarius and other storage pests 322 

are pertinent to this, in that in Europe this assemblage is only able to maintain populations 323 

where long term storage on a centralised scale is practised. This association with bulk storage 324 

is what limits the distribution of the weevil and it is only much later, with the provisioning of 325 

Roman garrisons, that it moves further north (e.g. Buckland 1991; Smith and Kenward 2011).  326 

Additional introductions during the LBK, the spider beetles G. psylloides and N. hololeucus, 327 

probably arrived with crop and other materials transported by farming groups to the Rhine 328 

valley.  The cadelle T. mauritanicus is also present, exploiting stored products.  In the case of 329 

the house fly, M. domestica, it was probably dispersed with domestic animals and their dung, 330 

following them over northwest Europe. Winter stalling, utilising leaf fodder, necessary to 331 

maintain stock through winters in forested environments, is evidenced from the late Neolithic 332 

at Thayngen-Weier in Switzerland (Troels-Smith 1984; Nielsen et al. 2000), although there is 333 

as yet no firm evidence for its association with LBK.  334 

During the period after the LBK from the fourth millennium to the mid third millennium BC, 335 

the Aegean records of S. granarius from Servia and O. surinamensis from Mandalo, are the 336 

only potential insect evidence for bulk storage (see Table 1). Although after its initial 337 

introduction to the Rhine valley, S. granarius would be expected to spread with storage 338 

farming, this does not appear to be the case. T. mauritanicus is the only species associated 339 

with storage from northwest Europe from this period. Whilst research is limited, there is a 340 

notable absence of grain storage pests from 3500 BC to the end of the Neolithic. During this 341 

period, the records of invasive species are restricted to M. domestica and P. irritans 342 
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(Panagiotakopulu and Buckland 2017; Remicourt et al. 2014). The most northerly known 343 

occurrence of the house fly, from the Funnel Beaker and Pitted ware site of Alvastra in 344 

southern Sweden, appear to be associated with an essentially pastoral group. In the absence of 345 

the evidence for storage pests, partly a result of the gaps in research, it is difficult to provide 346 

useful discussion on trade and long distance movement of foodstuffs, and interpretation of 347 

archaeological evidence is often purely theoretical. Subsistence towards the final Neolithic 348 

may have become more locally based with less reliance upon trading and gift exchange 349 

networks, but this begs the question why the initial wave of Neolithic introductions did not 350 

continue to expand during the rest of the period.  The excavated evidence shows that that the 351 

late LBK sees massacres (Wahl and Trautmann 2012; Meyer et al. 2013; Teschler-Nicola 352 

2012) and whole villages ending as a result of violence (Wild et al 2004). Conflict however 353 

was not restricted to the intercultural and some injuries on LBK skeletons had clearly been 354 

inflicted by LBK weapons (Scarre 2005); one can envisage raids over winter food resources 355 

and seed grains on an unstable moving frontier.    356 

In a landscape still with extensive forests (but see Vera 2000 and subsequent discussion, e.g. 357 

Fyfe 2007), it was still easier to risk taking from a neighbour’s stores than further clearance 358 

and if seed grains had been lost to pests, the only other option might have involved starvation, 359 

or a drift towards a more pastoral existence. Data indicating a more transient nature of the 360 

warfare during the end of the Neolithic (Christensen 2004) provide critical information both 361 

for the nature of settlement and farming, although accurate dates from relevant contexts and  362 

DNA and isotopic data from plants and animals, including humans, remain sparse.  In terms 363 

of insect assemblages, a pattern of dominance of pastoral activities continues in northwest 364 

Europe during the Bronze and into the Iron Age, and it is only with the Roman army that 365 

storage associated pests again dominate synanthropic faunas (Panagiotakopulu and Buckland  366 

2017).  367 

Conclusions 368 

The past distribution of introduced insects which specialise on stored products provides 369 

valuable information for understanding the spread of early farming.  In Europe, the Neolithic 370 

lake settlement at Dispilio has evidence for the early introduction of a storage pest, the grain 371 

weevil, Sitophilus granarius. Its fossil records link the spread of agriculture in northern 372 

Greece and the Linear Band Keramik in the Rhine valley and stress the importance of 373 
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accumulated crop surplus and losses to pests in storage in the expansion of farmers from the 374 

Fertile Crescent to northern Europe, from steppe to forest.   375 

Insect invaders, ranging from storage pests to synanthropic flies and ectoparasites, which 376 

accompanied Neolithic expansion, suggest the range of movement and exchange networks.  377 

Current data indicate that the initial introductions of storage pests in northwest Europe were 378 

not perpetuated beyond the Middle Neolithic, implying the lack of bulk crop storage in the 379 

area and perhaps  the collapse of exchange networks and movement of cereals. The house fly, 380 

Musca domestica, and the human flea, Pulex irritans however, persisted after their first 381 

European introductions, perhaps in relation to pastoral farming. 382 

Further fossil insect research will provide much needed data to understand better the 383 

mechanisms for species introductions, their spread and establishment and an independent line 384 

of evidence for deciphering the ecological changes which have led ultimately to the modern 385 

homogenisation of  farming. 386 
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Site 

Geographic 

Area Species Chronology Period Reference 

Atlit-Yam Israel 

Sitophilus 

granarius (L.) 

ca. 8250 cal BP (ca. 

6200 cal  BC)  

Pre Pottery 

Neolithic C 

(PPNC) 

Kislev et al. 

2004 

Dispilio Greece 

Sitophilus 

granarius (L.) ca. 5700 cal BC 

Aegean 

Middle 

Neolithic 

Panagiotakopulu 

ibid 

Plaussig Germany 

Sitophilus 

granarius (L.) 

7219 cal BP  (ca. 

5250 cal BC) 

Linear Band 

Keramik 

(LBK)  Schmidt 2013 

Eythra Germany 

Sitophilus 

granarius (L.) 

7034 cal BP, 7269 

BP-7180 cal BP 

(ca. 5250 cal BC) LBK 

Schmidt 2010, 

2013 

Erkelenz-

Kückhoven Germany 

Sitophilus 

granarius (L.) 5057 cal BC LBK 

Schmidt 1998, 

2013 

Göttingen Germany 

Sitophilus 

granarius (L.) 

 6030 BP  (ca. 

4935–4800 cal BC) LBK 

Büchner and 

Wolf 1997 

Erkelenz-

Kückhoven Germany 

Musca domestica 

L. 5057 BC LBK Schmidt 1998 

Eythra, 

Germany Germany 

Gibbium 

psylloides (Czen.)  ca. 5250 cal BC LBK  Schmidt 2013 

Eythra, 

Germany Germany 

Niptus hololeucus 

(Fald.) ca. 5250 cal BC LBK  Schmidt 2013 

Plaussig Germany 

Tenebroides 

mauritanicus (L.) ca. 5250 cal BC LBK 

Schmidt  in 

King et al 2014 

Erkelenz-

Kückhoven Germany 

Tenebroides 

mauritanicus (L.) 5057 cal BC LBK Schmidt 1998 

Singen 

Offwiese Germany 

Tenebroides 

mauritanicus (L.) 4500-4000 cal BC 

Grossgartach 

culture 

Schmidt 2007, 

2013 

Servia Greece 

Sitophilus 

granarius (L.) 

ca. 4500 - 4200 cal 

BC 

Aegean Late 

Neolithic Hubbard 1979 

Mandalo Greece 

Oryzaephilus 

surinamensis (L.) 4450-4340 cal  BC 

Aegean Late 

Neolithic 

Valamoti and 

Buckland 1995 

Saint-

Maximin-

la-Sainte-

Baume France Pulex irritans L. ca. 3600 BC Late Neolithic 

Remicourt et al. 

2014 

Schipluiden Netherlands Pulex irritans L. ca. 3500 cal BC Late Neolithic Hakbijl 2006 

Chalain, 

Jura France Pulex irritans L. ca. 3200 - 2980 BC Late Neolithic 

Yvinec  et al. 

2000 

Thayngen-

Weier Switzerland 

Musca domestica 

L. 

ca. 3500-3000 cal  

BC 

Cortaillod 

culture 

Troels 

Smith1984; 

Nielsen et al. 

2000 

Schipluiden Netherlands 

Musca domestica 

L. ca. 3500  cal BC Late Neolithic Hakbijl 2006 

Federsee  Germany 

Musca domestica 

L. ca. 3000 cal  BC  Late Neolithic Schmidt 2004 



Alvastra Sweden 

Musca domestica 

L. ca. 3000 cal  BC 

Funnel Beaker 

and Pitted 

Ware culture Lemdahl 1995 

Skara Brae,  

Orkney Scotland Pulex irritans L. 

ca. 3100 -2500 cal  

BC Late Neolithic 

Buckland and 

Sadler 1997 
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