50 research outputs found

    The impact of mitochondrial tRNA mutations on the amount of ATP synthase differs in the brain compared to other tissues

    Get PDF
    AbstractThe impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNALys (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNALeu(UUR)). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits

    Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage

    Get PDF
    Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts

    Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.

    Get PDF
    Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale

    Serotonin limits generation of chromaffin cells during adrenal organ development

    Get PDF
    Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies

    First Macedonian child with tyrosinemia type 1 successfully treated with nitisinone and report of a novel mutation in the FAH gene

    No full text
    Introduction. Hereditary tyrosinemia type 1 (HT1) is a severe hereditary metabolic disorder of tyrosine metabolism due to fumarylacetoacetate hydrolase (FAH) deficiency and accumulation of toxic products in tissues. More than 80 mutations in the FAH gene are presently reported on the Human Genome Mutation Database. To date, no molecular genetic defects of HT1 in Macedonia have been described. Case outline. A female infant two and a half months old presented with failure to thrive, anemia, edemas, and severe coagulation disturbances. The diagnosis of HT1 was based on high levels of serum α-fetoprotein, increased serum tyrosine, and positive succinylacetone in urine. Nitisinone treatment with tyrosine-restriction diet was immediately introduced. The patient, currently aged five years, has normal growth, psychomotor development, and no focal lesions on abdominal MRI. A screening of the FAH gene revealed two heterozygous mutations – c.[1A>G];[784T>A]. The mutation c.784T>A is a novel one (p.Trp262Arg), and was predicted to be the cause of the disease by an in silico analysis. Conclusion. To date, this case is the first and only child with HT1 successfully treated with nitisinone in our country. Also, this is the first report of an HT1 patient caused by the c.784T>A mutation

    Revisiting mitochondrial diagnostic criteria in the new era of genomics

    No full text
    PurposeDiagnosing primary mitochondrial diseases (MDs) is challenging in clinical practice. The mitochondrial disease criteria (MDC) have been developed to quantify the clinical picture and evaluate the probability of an underlying MD and the need for a muscle biopsy. In this new genetic era with next-generation sequencing in routine practice, we aim to validate the diagnostic value of MDC.MethodsWe retrospectively studied MDC in a multicenter cohort of genetically confirmed primary MD patients.ResultsWe studied 136 patients (61 male, 91 nuclear DNA (nDNA) mutations). Forty-five patients (33%) had probable MD and 69 (51%) had definite MD according to the MDC. A muscle biopsy was performed in 63 patients (47%). Patients with nDNA mutations versus mitochondrial DNA mutations were younger (6.4 ± 9.7 versus 19.5 ± 17.3 y) and had higher MDC (7.07 ± 1.12/8 versus 5.69 ± 1.94/8). At a cutoff of 6.5/8, the sensitivity to diagnose patients with nDNA mutations is 72.5% with a positive predictive value of 69.5%. In the nDNA mutation group, whole-exome sequencing could diagnose patients with lower scores (MDC (6.84 ± 1.51/8) compared to Sanger sequencing MDC (7.44 ± 1.13/8, P = 0.025)). Moreover 7/8 patients diagnosed with possible MD by MDC were diagnosed by whole-exome sequencing.ConclusionMDC remain very useful in the clinical diagnosis of MD, in interpreting whole-exome results and deciding on the need for performing muscle biopsy.Genetics in Medicine advance online publication 26 October 2017; doi:10.1038/gim.2017.125.status: publishe

    NovelOPA1missense mutation in a family with optic atrophy and severe widespread neurological disorder

    No full text
    Purpose:  To identify the underlying molecular genetic cause in a Czech family with optic atrophy, deafness, ptosis, ophthalmoplegia, polyneuropathy and ataxia transmitted as an autosomal dominant trait. Methods:  Ophthalmological and neurological examination followed by molecular genetic analyses. Results:  Seven family members were clinically affected. There was a variable but progressive visual, hearing and neurological disability across the family as a whole. The majority of subjects presented with impairment of visual function and a variable degree of ptosis and/or ophthalmoplegia from the first to the third decade of life. Deafness, neuropathy and ataxia appeared later, in the third and fourth decade. Migraine, tachycardia, intention tremor, nystagmus and cervical dystonia were observed in isolated individuals. A significant overall feature was the high level of neurological disability leading to 3 of 4 members being unable to walk or stand unaided before the age of 60 years. A novel missense mutation c.1345A>C (p.Thr449Pro) in OPA1 segregating with the disease phenotype over three generations was detected. In silico analysis supported pathogenicity of the identified sequence variant. Conclusion:  Our work expands the spectrum of mutation in OPA1, which may lead to severe multisystem neurological disorder. The molecular genetic cause of dominant optic atrophy in the Czech population is reported for the first time. We propose that regular cardiac follow-up in patients diagnosed with dominant optic atrophy and widespread neurological disease should be considered

    Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues

    Get PDF
    International audienceIn vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1-and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies
    corecore