1,006 research outputs found

    Analysis of pore-fluid pressure gradient and effective vertical-stress gradient distribution in layered hydrodynamic systems

    Get PDF
    A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study

    Finite driving rate and anisotropy effects in landslide modeling

    Full text link
    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors is presented.Comment: 8 pages, 9 figure

    Arsenic movement and fractionation in agricultural soils which received wastewater from an adjacent industrial site for 50 years

    Get PDF
    Arsenic (As) is an element with important environmental and human health implications due to its toxic properties. It is naturally occurring since it is contained in minerals, but it can also be enriched and distributed in the environment by anthropogenic activities. This paper reports on the historic As contamination of agricultural soils in one of the most important national relevance site for contamination in Italy, the so-called SIN Brescia-Caffaro, in the city of Brescia, northern Italy. These agricultural areas received As through the use of irrigation waters from wastewater coming from a factory of As-based pesticides (lead and calcium arsenates, sodium arsenite). Pesticide production started in 1920 and ended in the '70. Concentrations in the areas are generally beyond the legal threshold values for different soil uses and are up to >200 mg/kg. Arsenic contamination was studied to assess the long-time trend and the dynamics related to the vertical movement of As down to 1 m depth and its horizontal diffusion with surface irrigation in the entire field. Arsenic fractionation analysis (solid phase speciation by sequential extraction procedure) was also performed on samples collected from these areas and employed in greenhouse experiments with several plant species to evaluate the long-term contamination and the role of plant species in modifying As availability in soil. The results of this work can help in the evaluation of the conditions controlling the vertical transfer of As towards surface aquifers, the bioaccumulation likelihood in the agricultural food chain and the selection of sustainable remediation techniques such as phytoextraction

    Modelling micropollutant cycle in Lake Como in a winter scenario: Implications for water use and reuse, ecosystem services, and the EU zero pollution action plan

    Get PDF
    The fate and effects of 42 pharmaceuticals was studied in Lake Como (Italy), in wastewater treatment plants delivering water to the lake, in two rivers and in potable water obtained from lake water. Lake Como is one of the deepest and largest lakes in Northern Italy, serving important ecosystem services (i.e., drinking water, recreational, industrial, irrigation uses), some of which are currently at risk giving the current water scarcity and climate change scenarios. The highest concentrations measured in lake water were those of diclofenac, followed by carbamazepine, its metabolite, and clarithromycin. The data measured allowed to calibrate and run a fugacity-based lake model, which showed that the most important chemical load generally comes from the advective water from the north of the lake, rather than from the direct wastewater treatment plant (WWTP) discharges. This indicates that only an important reduction of chemical discharge (reduced use or extensive treatment) at a drainage basin level could significantly reduce concentrations in water. This has strong implications on how to implement the EU zero pollution action plan to significantly improve water ecosystem and human health protection

    Investigation of biologically active zeolite: role of colonization in the removal of 14C-labelled sulfamethoxazole in wastewater

    Get PDF
    Up-to-date approaches to remove micropollutants in wastewater treatment are based on adsorbing materials like activated carbon. These fossil-based materials can also provide a surface for microbial colonization, which could further improve the removal of MPs. As zeolite filters have shown interesting performance in the removal of MPs in previous works, this study aimed to investigate the effect of microbial colonization on such filters on the elimination of 14C-labelled sulfamethoxazole (SMX), an antibiotic from the class of sulfonamides. Lab scale removal tests were set in 100 mL reactors and monitored for 150 days at room temperature. Taxa known to be linked to organic pollutant degradation (Caulobacterales, Rhizobiales, Burkholderiales) were found among the microbial community attached to the zeolite. Bacterial colonization of zeolite filters improved the removal of 14C-sulfamethoxazole by 35 % compared to the control. An analysis of the microbial community dynamics over time revealed the increased abundance of the Vicinamibacterales taxon after 50 days of contact with SMX. This order abundance, linked to degradation of sulfonamides, went from 0 to 17 %; and Shannon diversity ranged from 1.51 to 1.99. Data showed that zeolite filters as adsorbing material in wastewater treatment plants can improve MPs removal by supporting bacterial colonization, making it an interesting support that could synergize with biological activated carbon

    Psychometric Properties of the SymptoMScreen Questionnaire in a Mild Disability Population of Patients with Relapsing–Remitting Multiple Sclerosis: Quantifying the Patient’s Perspective

    Get PDF
    Crucial elements for achieving optimal long-term outcomes in multiple sclerosis (MS) are patient confidence and effective physician-patient communication. Patient-reported instruments may provide the means to fill the gap in currently available clinician-rated measures. The SymptoMScreen (SMSS) is a brief self-assessment tool for measuring symptom severity in 12 neurologic domains commonly affected by MS. We conducted a non-interventional study to assess the dimensional structure and item characteristics of the SMSS. A total of 218 patients with relapsing-remitting MS and mild disability (median Expanded Disability Status Scale score 2.0) were studied. Symptom severity was low (SMSS score 13.5, interquartile range 4.2-27), fatigue being the domain with the highest impact. A non-parametric item response theory, i.e., Mokken analysis, found that the SMSS is a robust one-dimensional scale (overall scalability index H 0.60) with high reliability (Cronbach's alpha 0.94). The confirmatory factor analysis model confirmed the unidimensional structure (comparative fit index 1.0, root-mean-square error of approximation 0.001). Samejima's model fitted well an unconstrained model with different item difficulties. The SMSS shows appropriate psychometric characteristics and may constitute a valuable and easy-to-implement addition to measure the symptom severity in clinical practice.This study was funded by the Medical Department of Roche Farma Spain. The sponsor also funded the journals Rapid Service fe

    Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies

    Get PDF
    Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD

    Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    Get PDF
    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H2O2) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

    Contribution of peat compaction to relative sea-level rise within Holocene deltas

    Get PDF
    Modern and forecasted flooding of deltas is accelerated by subsidence of Holocene deposits. Subsidence caused by tectonics, isostasy, sediment compaction and anthropogenic processes, combined with eustatic sea-level rise, results in drowning and increased flood risk within densely populated deltas. Many deltaic sedimentary successions include substantial amounts of peat, which is highly compressible compared to clay, silt and sand. Peat compaction, therefore, may contribute considerably to total delta subsidence. Existing studies are inadequate for quantifying peat compaction across deltas. We present a numerical peat compaction model calibrated with an extensive field dataset. The model quantifies spatial and temporal trends in peat compaction within fluvial-dominated Holocene flood basin sequences of different compositions. Subsidence due to peat compaction is highly variable in time and space, with local rates of up to 15 mm/yr, depending on sedimentary sequence. This is extremely important information for developing sound delta management strategies. Artificial groundwater table lowering may cause substantial additional subsidence. Subsidence due to peat compaction might even exceed estimates of relative sea-level rise, and thus, may seriously increase the risk of delta drowning and human vulnerability to floodin
    corecore