100 research outputs found

    Pitch discriminiation accuracy in musicians vs nonmusicians: an event-related potential and behavioral study

    Get PDF
    Previously, professional violin players were found to automatically discriminate tiny pitch changes, not discriminable by nonmusicians. The present study addressed the pitch processing accuracy in musicians with expertise in playing a wide selection of instruments (e.g., piano; wind and string instruments). Of specific interest was whether also musicians with such divergent backgrounds have facilitated accuracy in automatic and/or attentive levels of auditory processing. Thirteen professional musicians and 13 nonmusicians were presented with frequent standard sounds and rare deviant sounds (0.8, 2, or 4% higher in frequency). Auditory event-related potentials evoked by these sounds were recorded while first the subjects read a self-chosen book and second they indicated behaviorally the detection of sounds with deviant frequency. Musicians detected the pitch changes faster and more accurately than nonmusicians. The N2b and P3 responses recorded during attentive listening had larger amplitude in musicians than in nonmusicians. Interestingly, the superiority in pitch discrimination accuracy in musicians over nonmusicians was observed not only with the 0.8% but also with the 2% frequency changes. Moreover, also nonmusicians detected quite reliably the smallest pitch changes of 0.8%. However, the mismatch negativity (MMN) and P3a recorded during a reading condition did not differentiate musicians and nonmusicians. These results suggest that musical expertise may exert its effects merely at attentive levels of processing and not necessarily already at the preattentive levels

    Electromagnetic Correlates of Musical Expertise in Processing of Tone Patterns

    Get PDF
    Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training

    Faster maturation of selective attention in musically trained children and adolescents : Converging behavioral and event-related potential evidence

    Get PDF
    Previous work suggests that musical training in childhood is associated with enhanced executive functions. However, it is unknown whether this advantage extends to selective attention-another central aspect of executive control. We recorded a well-established event-related potential (ERP) marker of distraction, the P3a, during an audio-visual task to investigate the maturation of selective attention in musically trained children and adolescents aged 10-17 years and a control group of untrained peers. The task required categorization of visual stimuli, while a sequence of standard sounds and distracting novel sounds were presented in the background. The music group outperformed the control group in the categorization task and the younger children in the music group showed a smaller P3a to the distracting novel sounds than their peers in the control group. Also, a negative response elicited by the novel sounds in the N1/MMN time range (similar to 150-200 ms) was smaller in the music group. These results indicate that the music group was less easily distracted by the task-irrelevant sound stimulation and gated the neural processing of the novel sounds more efficiently than the control group. Furthermore, we replicated our previous finding that, relative to the control group, the musically trained children and adolescents performed faster in standardized tests for inhibition and set shifting. These results provide novel converging behavioral and electrophysiological evidence from a cross-modal paradigm for accelerated maturation of selective attention in musically trained children and adolescents and corroborate the association between musical training and enhanced inhibition and set shifting.Peer reviewe

    Multiple-look effects on temporal discrimination within sound sequences

    Get PDF
    The multiple-look notion holds that the difference limen (DL) decreases with multiple observations. We investigated this notion for temporal discrimination in isochronous sound sequences. In Experiment 1, we established a multiple-look effect when sequences comprised nine standard time intervals (S) followed by an increasing number of comparison time intervals (C), but no multiple-look effect when one trailing C interval was preceded by an increasing number of S intervals. In Experiment 2, we extended the design. There were four sequential conditions: (a) 9 leading S intervals followed by 1, 2, 
, or 9 C-intervals; (b) 9 leading C intervals followed by 1, 2, 
, or 9 S intervals; (c) 9 trailing C-intervals preceded by 1, 2, 
, or 9 S-intervals; and (d) 9 trailing S-intervals preceded by 1, 2, 
, or 9 C-intervals. Both the interval accretions before and after the tempo change caused multiple-look effects, irrespective of the time order of S and C. Complete deconfounding of the number of intervals before and after the tempo change was accomplished in Experiment 3. The multiple-look effect of interval accretion before the tempo change was twice as big as that after the tempo change. The diminishing returns relation between the DL and interval accretion could be described well by a reciprocal function

    Enhanced Syllable Discrimination Thresholds in Musicians

    Get PDF
    Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities.Grammy FoundationWilliam F. Milton Fun

    Non-linear laws of echoic memory and auditory change detection in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory.</p> <p>Results</p> <p>Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms), while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms). The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds.</p> <p>Conclusions</p> <p>The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.</p

    The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    Get PDF
    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans
    • 

    corecore