Reinstatement of dynamic memories requires the replay of neural patterns that unfold over
time in a similar manner as during perception. However, little is known about the mechanisms
that guide such a temporally structured replay in humans, because previous studies
used either unsuitable methods or paradigms to address this question. Here, we overcome
these limitations by developing a new analysis method to detect the replay of temporal patterns
in a paradigm that requires participants to mentally replay short sound or video clips.
We show that memory reinstatement is accompanied by a decrease of low-frequency (8
Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay
effects were evident in the visual as well as in the auditory domain and were localized to
sensory-specific regions. These results suggest low-frequency phase to be a domain-general
mechanism that orchestrates dynamic memory replay in humans