279 research outputs found

    Collusions Between Patients and Clinicians in End-of-Life Care: Why Clarity Matters.

    Get PDF
    Collusion, an unconscious dynamic between patients and clinicians, may provoke strong emotions, unreflected behaviors, and a negative impact on care. Collusions, prevalent in the health care setting, are triggered by situations which signify an unresolved psychological issue relevant for both, patient and clinician. After an introductory definition of collusion, two archetypal situations of collusion-based on material from a regular supervision of a palliative care specialist by a liaison psychiatrist-and means of working through collusion are presented. The theoretical framework of collusion is then described and the conceptual shortcomings of the palliative care literature in this respect discussed, justifying the call for more clarity. Finally, cultural aspects and societal injunctions on the dying, contributing to the development of collusion in end-of-life care, are discussed

    Proof Theory and Ordered Groups

    Full text link
    Ordering theorems, characterizing when partial orders of a group extend to total orders, are used to generate hypersequent calculi for varieties of lattice-ordered groups (l-groups). These calculi are then used to provide new proofs of theorems arising in the theory of ordered groups. More precisely: an analytic calculus for abelian l-groups is generated using an ordering theorem for abelian groups; a calculus is generated for l-groups and new decidability proofs are obtained for the equational theory of this variety and extending finite subsets of free groups to right orders; and a calculus for representable l-groups is generated and a new proof is obtained that free groups are orderable

    Non-deterministic Boolean Proof Nets

    No full text
    16 pagesInternational audienceWe introduce Non-deterministic Boolean proof nets to study the correspondence with Boolean circuits, a parallel model of computation. We extend the cut elimination of Non-deterministic Multiplicative Linear logic to a parallel procedure in proof nets. With the restriction of proof nets to Boolean types, we prove that the cut-elimination procedure corresponds to Non-deterministic Boolean circuit evaluation and reciprocally. We obtain implicit characterization of the complexity classes NP and NC (the efficiently parallelizable functions)

    A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation

    Get PDF
    In many eukaryotic mRNAs one or more short ‘upstream’ open reading frames, uORFs, precede the initiator of the main coding sequence. Upstream ORFs are functionally diverse as illustrated by their variety of features in polyamine pathway biosynthetic mRNAs. Their propensity to act as sensors for regulatory circuits and to amplify the signals likely explains their occurrence in most polyamine pathway mRNAs. The uORF-mediated polyamine responsive autoregulatory circuits found in polyamine pathway mRNAs exemplify the translationally regulated dynamic interface between components of the proteome and metabolism

    Combining Effects and Coeffects via Grading

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Association for Computing Machinery.Effects\textit{Effects} and coeffects\textit{coeffects} are two general, complementary aspects of program behaviour. They roughly correspond to computations which change the execution context (effects) versus computations which make demands on the context (coeffects). Effectful features include partiality, non-determinism, input-output, state, and exceptions. Coeffectful features include resource demands, variable access, notions of linearity, and data input requirements. The effectful or coeffectful behaviour of a program can be captured and described via type-based analyses, with fine grained information provided by monoidal effect annotations and semiring coeffects. Various recent work has proposed models for such typed calculi in terms of graded (strong) monads\textit{graded (strong) monads} for effects and graded (monoidal) comonads\textit{graded (monoidal) comonads} for coeffects. Effects and coeffects have been studied separately so far, but in practice many computations are both effectful and coeffectful, e.g., possibly throwing exceptions but with resource requirements. To remedy this, we introduce a new general calculus with a combined effect-coeffect system\textit{effect-coeffect system}. This can describe both the changes\textit{changes} and requirements\textit{requirements} that a program has on its context, as well as interactions between these effectful and coeffectful features of computation. The effect-coeffect system has a denotational model in terms of effect-graded monads and coeffect-graded comonads where interaction is expressed via the novel concept of graded distributive laws\textit{graded distributive laws}. This graded semantics unifies the syntactic type theory with the denotational model. We show that our calculus can be instantiated to describe in a natural way various different kinds of interaction between a program and its evaluation context.Orchard was supported by EPSRC grant EP/M026124/1 and EP/K011715/1 (whilst previously at Imperial College London), Katsumata by JSPS KAKENHI grant JP15K00014, Uustalu by Estonian Min. of Educ. and Res. grant IUT33-13 and Estonian Sci. Found. grant 9475. Gaboardi’s work was done in part while at the University of Dundee, UK supported by EPSRC grant EP/M022358/1

    Practical Implementation of Attitude-Control Algorithms for an Underactuated Satellite

    Get PDF
    The challenging problem of controlling the attitude of satellites subject to actuator failures has been the subject of increased attention in recent years. The problem of controlling the attitude of a satellite on all three axes with two reaction wheels is addressed in this paper. This system is controllable in a zero-momentum mode. Three-axis attitude stability is proven by imposing a singular quaternion feedback law to the angular velocity trajectories.Two approaches are proposed and compared to achieve three-axis control: The first one does not require angular velocity measurements and is based on the assumption of a perfect zero momentum, while the second approach consists of tracking the desired angular velocity trajectories. The full-state feedback is a nonlinear singular controller. In-orbit tests of the first approach provide an unprecedented practical proof of three-axis stability with two control torques. The angular velocity tracking approach is shown to be less efficient using the nonlinear singular controller. However, when inverse optimization theory is applied to enhance the nonlinear singular controller, the angular velocity tracking approach is shown to be the most efficient. The resulting switched inverse optimal controller allows for a significant enhancement of settling time, for a prescribed level of the integrated torque

    An approximation approach to spatial connectivity for a data-limited endangered species with implications for habitat restoration

    Get PDF
    Among numerous concerns, restoration ecologists are routinely plagued with the problem of where to implement conservation efforts to best maintain spatial connectivity and population structure. Knowledge about connectivity within a metapopulation could offer valuable insight to address this issue and could help with the allocation of limited resources more effectively. However, direct estimation of dispersal is challenging because species can disperse widely within a landscape. Here, we developed a novel hierarchical Bayesian model to estimate spatial connectivity from occurrence data of an endangered stream fish, Topeka shiner (Notropis topeka). Our goal was to identify dispersal corridors that are centrally connected to the metapopulation that could be beneficial in decision making about future habitat restorations aimed at maintaining population structure. Connectivity modeling is data intensive and resource managers may not have the necessary data requirements; thus, we also examined the usefulness of graph theory (i.e. network centrality) as a proxy for connectivity. Model selection identified an upstream biased asymmetric dispersal pattern for the species. We were able to quantify and map connectivity and identified over 68 km of stream reaches as highly connected to the metapopulation. Probability of occurrence in dispersal corridors (i.e. streams) increased with connectivity and decreased with drainage area, highlighting the importance of conserving dispersal corridors and preferred habitat patches. Restorations in connected locations would provide critical habitat near important dispersal corridors. Betweenness centrality was positively correlated with connectivity and occurrence in restored habitat. Modeling of metapopulation connectivity and its correlation with graph theory demonstrated the usefulness of these techniques to guide conservation actions, especially in countries where data collection efforts are not common and conservation funding is limited.This article is published as Wahl, Charles F., Nika Galic, Richard Brain, Maxime Vaugeois, Michael Weber, Kevin J. Roe, Timothy Stewart et al. "An approximation approach to spatial connectivity for a data-limited endangered species with implications for habitat restoration." Biological Conservation 291 (2024): 110470. doi:10.1016/j.biocon.2024.110470. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted

    Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider

    Get PDF
    The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab150~{\rm ab}^{-1} to study CPCP-violation in the BB-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6×1035 cm2s1\rm 6 \times 10^{35}~cm^{-2}s^{-1} by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to βy=0.3 mm\beta^{*}_{\rm y}=\rm 0.3~mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8×1035 cm2s1\rm 2.8 \times 10^{35}~cm^{-2}s^{-1} is reached for βy=0.6 mm\beta^{*}_{\rm y}=\rm 0.6~mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.Comment: 28 pages, 17 figures, 9 tables (revised

    The Antigen ASB4 on Cancer Stem Cells Serves as a Target for CTL Immunotherapy of Colorectal Cancer

    Get PDF
    網羅的なHLAリガンドーム解析により,がん幹細胞(cancer stem cell,CSC)に特異的なASB4由来のペプチドIV9を同定し,CSCを特異的に傷害可能なCTL免疫療法となることを示した.更にCSCを標的としたCTL免疫療法が再発予防として有用であることを明らかにした
    corecore