40 research outputs found
Declining Population Sizes and Loss of Genetic Diversity in Commercial Fishes: A Simple Method for a First Diagnostic
Exploited fish species may have or are experiencing declines in population sizes coupled
with changes in their environmental conditions owing to global change. Declining
populations might lead to a decrease in genetic diversity, which in turn may produce
losses of adaptive potential to face current and future environmental changes. Thus, this
study aims to answer a simple, even naive question, given the complexity of the subject:
Could we use a simple method to obtain information on the loss of genetic diversity in
exploited fish species? We investigated the use of the levels of genetic diversity in the
widely used genetic marker Cytochrome C Oxidase subunit I (COI) mitochondrial gene.
Estimates of genetic diversity in COI were obtained for populations of seven fish species
with different commercial importance from the East China Sea. These estimates were
contrasted against large datasets of genetic diversity in COI for fish species (East-Asian
N=118, and worldwide N=1425), and six control species with known biology and history.
We found that estimates of genetic diversity in COI match the expectations from
theoretical predictions and known declines by fishing pressures. Thus, the answer to
our question is affirmative and we conclude that estimates of genetic diversity in COI
provide an effective first diagnostic of the conservation status of exploited fish species.En prens
Evolutionary history of Podarcis tiliguerta on Corsica and Sardinia.
BACKGROUND: Podarcis tiliguerta is a wall lizard endemic to the Mediterranean islands of Corsica and Sardinia. Previous findings of high mtDNA and morphological diversity have led to the suggestion that it may represent a species complex. Here, we analysed mitochondrial and nuclear markers (mtDNA, 3110 bp; 6 nDNA loci, 3961 bp) in P. tiliguerta sampled from thirty-two localities across Corsica and Sardinia. RESULTS: We find much greater intraspecific genetic divergence than between sister species of other Mediterranean island Podarcis, i.e., between P. lilfordi and P. pityusensis. We detected three mtDNA clusters in Corsica (North, South-East and South-West) and either two or three in Sardinia (North vs. South) depending on the clustering method. Only one or two nDNA groups were identified within each main island (again, depending on the method). A Bayesian time-calibrated multispecies coalescent tree was obtained from mtDNA and provided statistical support for a Miocene origin of the species (13.87 Ma, 95% HPD: 18.30-10.77 Ma). The posterior mean divergence time for the Corsican and Sardinian lineages was 12.75 Ma ago (95% HPD: 16.94-9.04 Ma). CONCLUSION: The results support the evolutionary distinctiveness of Corsican and Sardinian populations and also indicate a lack of post-divergence migration despite periods of contact being possible. Further to this, species delimitation analyses of Corsican and Sardinian lineages provided statistical support for their recognition as distinct (sister) taxa. Our results provide new insights into the biogeography of the Mediterranean biodiversity hotspot, and contribute important findings relevant to the systematics and evolution of this speciose lizard genus
Morphological and genetic diversity of the Balearic lizard,Podarcis lilfordi(Gunther, 1874): Is it relevant to its conservation?
Aims: To characterize the genetic and morphological diversification of the endangered Balearic lizard Podarcis lilfordi and to assess the relevance of this diversity, and how it is described, to conservation measures.
Location: This study covers all the populations of the Balearic lizard, Podarcis lilfordi, present in its range of distribution at coastal islets of Menorca, Mallorca and Cabrera Archipelago.
Methods: We analysed genetic and morphological variation across the 43 known extant populations of the Balearic lizard, using mitochondrial and nuclear markers. We examined morphometric and scalation characters using, in some cases, phylogenetically independent contrasts. We also incorporated the study of dorsal coloration and dorsal colour pattern including the analysis of melanism in several populations.
Results: We detected clear genetic divergence between Menorcan populations and populations from Mallorca and Cabrera, in both nuclear and mtDNA markers, but genetic divergence is relatively low among different insular populations within these groups. In contrast, morphological divergence was substantial both between Menorcan and remaining populations and within these groups. Morphological traits, such as dorsal coloration, body size and the number and size of scales, seemed to be linked with differences in climatic conditions between populations. In addition, some traits, as melanism, showed a strong phylogenetic signal.
Main conclusions: The morphological and genetic diversity of the Balearic lizard is incongruent with the subspecies described in the classical taxonomic literature. Moreover, current populations differ not only in some genetic and morphological features, but also in several ecological and ethological characteristics, in many cases unique to one population. Based on our results, we propose abandoning the use of subspecies to describe the extraordinary morphological diversity of the Balearic lizard and its replacement with the concept of evolutionary significant units (ESUs). ESUs are particularly suitable to describe and recognize such diversity and, especially, to ensure the continuity of the evolutionary process
New morphological and molecular evidence confirm the presence of the Norwegian skate Dipturus nidarosiensis (Storm, 1881) in the Mediterranean Sea and extend its distribution to the western basin
The present study confirms the presence of the Norwegian skate Dipturus nidarosiensis (Storm, 1881) in the Mediterranean Sea, by means of morphological traits and molecular markers providing the first record of this species in the Alboran Sea. Cannas et al. (2010) reported D. nidarosiensis for the first time in the Mediterranean from specimens captured in the central western basin, but Ebert & Stehmann (2013) and Stehmann et al. (2015) considered these records "likely refer to the smaller morphotype, Dipturus sp.", a species not yet described. Eight specimens of the Dipturus genus (Rajiformes: Rajidae) were caught off the Alboran Island (western Mediterranean) in 2012, 2013 and 2016, between 620 and 819 m depth. These specimens showed morphometric diagnostic features corresponding to those of Norwegian skates from the Northeast Atlantic and the central western Mediterranean Sea. Moreover, the Alboran individuals were genetically compared to Northeast Atlantic specimens available in GenBank by means of two mitochondrial DNA fragments: cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb). Analyses showed that the Northeast Atlantic Norwegian skate specimens and the Alboran Sea ones were genetically similar and shared haplotypes, corroborating the identification of the Alboran individuals as Dipturus nidarosiensis. However, they were different from other Dipturus species distributed throughout the Northeast Atlantic and the Mediterranean Sea. Our results confirm the occurrence of this deep-sea large skate species in the Mediterranean, although the IUCN Red List of Threatened Species does not consider it possible (Stehmann et al., 2015)Versión del edito