64 research outputs found

    Covariance Evaluation for Nuclear Data of Interest to the Reactivity Loss Estimation of the Jules Horowitz Material Testing Reactor

    Get PDF
    In modern nuclear technology, integral reactor parameter uncertainty evaluation plays a crucial role for both economic and safety purposes. Target accuracies for operating and future nuclear facilities can be obtained only if the available simulation tools, such that computational platforms and nuclear data, are precise enough to produce reduced biases and uncertainties on target reactor parameters. The quality of any engineering parameter uncertainty quantification analysis strongly depends on the reliability related to the covariance information contained in evaluated libraries. To propagate properly nuclear data uncertainty on nuclear reactor parameters, science-based variance-covariance matrices are then indispensable. The present work is devoted to nuclear data covariance matrices generation for reactivity loss uncertainty estimations regarding the Jules Horowitz Reactor (JHR), a material testing facility under construction at CEA-Cadarache (France). During depletion, in fact, various fission products appear and the related nuclear data are often barely known. In particular, the strenuous and worldwide recognized problem of generating fission product yields covariances has been mainly considered. Present nuclear data libraries such as JEFF or ENDF/B do not have complete uncertainty information on fission yields, which is limited to only variances. The main goal of this work is to generate science-based and physically consistent fission yields covariances to be associated to the existing European library JEFF-3.1.1. Variance-covariance matrices have been evaluated using CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache) for the most significant fissioning systems

    Activated Corrosion Products Evaluations for Occupational Dose Mitigation in Nuclear Fusion Facilities

    Get PDF
    Activated corrosion products generation in primary heat transfer systems of nuclear fusion facilities is a relevant radiological source term for occupation dose assessments. The formation of the Chalk River Undefined Deposit, already well known in nuclear fission power plants, represents a significant safety issue in fusion applications due to the intense high energy neutron fluences (about 14 MeV in Deuterium-Tritium operation). The activated corrosion products formation is a multi-physical problem. The combined synergy of activation, corrosion, dissolution, erosion, ejection, precipitation, and transport phenomena induces the contamination of coolant loop regions located outside the bio-shield, where scheduled worker operation might take place. The following manuscript shows how activated corrosion products are evaluated for the nuclear fusion power plant design under investigation by the Safety and Environment Work Package (WPSAE) of the Eurofusion Consortium (i.e., the European Demonstration power plant, EU-DEMO). The major issues in activated corrosion products estimations are here exposed and the main results for mass and activity inventories are briefly shown for some main Primary Heat Transfer Systems of EU-DEMO

    Preliminary Assessment of Radiolysis for the Cooling Water System in the Rotating Target of {SORGENTINA}-{RF}

    Get PDF
    The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5-7 x 10(13) s(-1). The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium (50%) ion beam. Beyond the main focus of medical radioisotope production, the source may represent a multi-purpose neutron facility by implementing a series of neutron-based techniques. Among the different engineering and technological issues to be addressed, the production of incondensable gases and corrosion product into the rotating target deserves a dedicated investigation. In this study, a preliminary analysis is carried out, considering the general layout of the target and the present choice of the target material

    The commissioning of the CUORE experiment: the mini-tower run

    Get PDF
    CUORE is a ton-scale experiment approaching the data taking phase in Gran Sasso National Laboratory. Its primary goal is to search for the neutrinoless double-beta decay in 130Te using 988 crystals of tellurim dioxide. The crystals are operated as bolometers at about 10 mK taking advantage of one of the largest dilution cryostat ever built. Concluded in March 2016, the cryostat commissioning consisted in a sequence of cool down runs each one integrating new parts of the apparatus. The last run was performed with the fully configured cryostat and the thermal load at 4 K reached the impressive mass of about 14 tons. During that run the base temperature of 6.3 mK was reached and maintained for more than 70 days. An array of 8 crystals, called mini-tower, was used to check bolometers operation, readout electronics and DAQ. Results will be presented in terms of cooling power, electronic noise, energy resolution and preliminary background measurements

    Results from the Cuore Experiment

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO2 exposure of 86.3kg yr, characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts/ (keV kg yr). In this physics run, CUORE placed a lower limit on the decay half- life of neutrinoless double beta decay of 130Te > 1.3.1025 yr (90% C. L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130Te 2vo3p decay with a resulting half- life of T2 2. [7.9 :- 0.1 (stat.) :- 0.2 (syst.)] x 10(20) yr which is the most precise measurement of the half- life and compatible with previous results

    New perturbation and sensitivity capabilities in Tripoli-4®

    No full text
    International audienceEstimating the changes in a nuclear system due to perturbations in the input nuclear data by separate Monte Carlo calculations might be extremely cumbersome for reactor applications. The Iterated Fission Probability (IFP) method has recently paved the way for the application of first-order standard perturbation theory in continuous-energy Monte Carlo codes. In this work, we detail the reactivity perturbation and k-eigenvalue sensitivity analysis capabilities of the Monte Carlo code Tripoli-4®. Simulation results obtained by using the newly implemented IFP algorithm of Tripoli-4® are compared to findings coming from other Monte Carlo methods (such as the differential operator and the correlated sampling) and codes (such as MCNP6 and KENO). For this purpose, we select some benchmark configurations (Godiva, Stacy, Jezebel, Flattop and a fuel lattice) and we test some of the most common perturbation and sensitivity methods currently available in production codes. Their respective advantages and drawbacks are analyzed, and possible future improvements are suggested. Our main finding is that Tripoli-4® produces very similar results to MCNP6 when the same techniques are used. Uncertainty propagation based on the obtained sensitivity profiles and on the COMAC nuclear data covariance matrices is finally discussed

    Water Chemistry Impact on Activated Corrosion Products: An Assessment on Tokamak Reactors

    Get PDF
    Activated Corrosion Product (ACP) formation and deposition pose a critical safety issue for nuclear fusion reactors. The working fluid transports the ACPs towards regions accessible by worker personnel, i.e., the steam generator. The code OSCAR-Fusion has been developed by the CEA (France) to evaluate the ACP generation and transport in closed water-cooled loops for fusion application. This work preliminary assesses the impact of water chemistry on the transport, precipitation, and deposition of corrosion products for the EU-DEMO divertor Plasma Facing Unit Primary Heat Transfer System. Sensitivity analyses and uncertainty quantification are needed due to the multi-physics phenomena involved in ACP formation and transport. The OSCAR-Fusion/RAVEN code coupling developed by the Sapienza University of Rome and ENEA are used. This work presents the perturbation results of different parameters chosen for a closed water-cooled loop considering a continuous scenario of 1888 days. The aim of this work is to preliminarily assess the variation of build-up of ACPs, perturbing the alkalizing agent concentration into the coolant, and the corrosion and release rates of different materials. The assessment of ACP formation deposition and transport is fundamental for source term identification, reduction of radiation exposure assessment, maintenance plan definition, design optimization, and waste management

    Use of the Bioness L300® Functional Electrical Stimulator in Acute Stroke Rehabilitation

    Full text link
    Purpose. Over 150,000 people in the U.S. every year experience foot drop following a stroke, slowing their ambulation and increasing their falls risk. We explore whether the use of functional electrical stimulation (FES) to the common fibular nerve during acute rehabilitation can maximize ambulation gains. Methods. Five in-patients admitted at Burke Rehabilitation Hospital experiencing foot drop participated. While receiving conventional physical therapy, four subjects wore the Bioness L300® device, and one subject used an elastic figure-8 wrapped elastic bandage. Gait parameters were evaluated at initial evaluation, an intermittent evaluation, and discharge. Results. During their stay, subjects significantly improved in gait velocity, percent of gait cycle in single-leg-stance for the involved lower extremity, percent of gait cycle in stance time for the involved lower extremity, and other gait-related variables. Conclusion. Future research is needed to confirm FES as a more helpful adjunct than an elastic wrap during acute rehabilitation

    Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    No full text
    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered
    corecore