216 research outputs found
Fractal fluctuations in quantum integrable scattering
We theoretically and numerically demonstrate that completely integrable
scattering processes may exhibit fractal transmission fluctuations, due to
typical spectral properties of integrable systems.
Similar properties also occur with scattering processes in the presence of
strong dynamical localization, thus explaining recent numerical observations of
fractality in the latter class of systems.Comment: revtex, 4 pages, 3 eps figure
Strong Convergence towards self-similarity for one-dimensional dissipative Maxwell models
We prove the propagation of regularity, uniformly in time, for the scaled
solutions of one-dimensional dissipative Maxwell models. This result together
with the weak convergence towards the stationary state proven by Pareschi and
Toscani in 2006 implies the strong convergence in Sobolev norms and in the L^1
norm towards it depending on the regularity of the initial data. In the case of
the one-dimensional inelastic Boltzmann equation, the result does not depend of
the degree of inelasticity. This generalizes a recent result of Carlen,
Carrillo and Carvalho (arXiv:0805.1051v1), in which, for weak inelasticity,
propagation of regularity for the scaled inelastic Boltzmann equation was found
by means of a precise control of the growth of the Fisher information.Comment: 26 page
Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment?
We investigate the parametric fluctuations in the quantum survival
probability of an open version of the delta-kicked rotor model in the deep
quantum regime. Spectral arguments [Guarneri I and Terraneo M 2001 Phys. Rev. E
vol. 65 015203(R)] predict the existence of parametric fractal fluctuations
owing to the strong dynamical localisation of the eigenstates of the kicked
rotor. We discuss the possibility of observing such dynamically-induced
fractality in the quantum survival probability as a function of the kicking
period for the atom-optics realisation of the kicked rotor. The influence of
the atoms' initial momentum distribution is studied as well as the dependence
of the expected fractal dimension on finite-size effects of the experiment,
such as finite detection windows and short measurement times. Our results show
that clear signatures of fractality could be observed in experiments with cold
atoms subjected to periodically flashed optical lattices, which offer an
excellent control on interaction times and the initial atomic ensemble.Comment: 18 pp, 7 figs., 1 tabl
Dynamics of Anderson localization in open 3D media
We develop a self-consistent theoretical approach to the dynamics of Anderson
localization in open three-dimensional (3D) disordered media. The approach
allows us to study time-dependent transmission and reflection, and the
distribution of decay rates of quasi-modes of 3D disordered slabs near the
Anderson mobility edge.Comment: 4 pages, 4 figure
Scleractinian corals (Fungiidae, Agariciidae and Euphylliidae) of Pulau Layang-Layang, Spratly Islands, with a note on Pavona maldivensis (Gardiner, 1905)
Layang-Layang is a small island part of an oceanic atoll in the Spratly Islands off Sabah, Malaysia. As the reef coral fauna in this part of the South China Sea is poorly known, a survey was carried out in 2013 to study the species composition of the scleractinian coral families Fungiidae, Agariciidae and Euphylliidae. A total of 56 species was recorded. The addition of three previously reported coral species brings the total to 59, consisting of 32 Fungiidae, 22 Agariciidae, and five Euphylliidae. Of these, 32 species are new records for Layang-Layang, which include five rarely reported species, i.e., the fungiids Lithophyllon ranjithi, Podabacia sinai, Sandalolitha boucheti, and the agariciids Leptoseris kalayaanensis and L. troglodyta. The coral fauna of Layang-Layang is poor compared to other areas in Sabah, which may be related to its recovery from a crown-of-thorns seastar outbreak in 2010, and its low habitat diversity, which is dominated by reef slopes consisting of steep outer walls. Based on integrative molecular and morphological analyses, a Pavona variety with small and extremely thin coralla was revealed as P. maldivensis. Since specimens from Sabah previously identified as P. maldivensis were found to belong to P. explanulata, the affinities and distinctions of P. maldivensis and P. explanulata are discussed
Structural effects on the luminescence properties of CsPbI3 nanocrystals
Metal halide perovskite nanocrystals (NCs) are promising for photovoltaic and light-emitting applications. Due to the softness of their crystal lattice, structural modifications have a critical impact on their optoelectronic properties. Here we investigate the size-dependent optoelectronic properties of CsPbI3 NCs ranging from 7 to 17 nm, employing temperature and pressure as thermodynamic variables to modulate the energetics of the system and selectively tune the interatomic distances. By temperature-dependent photoluminescence spectroscopy, we have found that luminescence quenching channels exhibit increased non-radiative losses and weaker exciton-phonon coupling in bigger particles, in turn affecting the luminescence efficiency. Through pressure-dependent measurements up to 2.5 GPa, supported by XRD characterization, we revealed a NC-size dependent solid-solid phase transition from the γ-phase to the δ-phase. Importantly, the optical response to these structural changes strongly depends on the size of the NC. Our findings provide an interesting guideline to correlate the size and structural and optoelectronic properties of CsPbI3 NCs, important for engineering the functionalities of this class of soft semiconductors
Fluorine-induced J-aggregation enhances emissive properties of a new NLO push–pull chromophore
A new fluorinated push–pull chromophore with good second-order NLO properties even in concentrated solution shows solid state intermolecular aryl–fluoroaryl interactions leading to J-aggregates with intense solid state luminescence
- …