62 research outputs found

    Probing Magnetic Excitations and Correlations in Single and Coupled Spin Systems with Scanning Tunneling Spectroscopy

    Full text link
    Spectroscopic measurements with low-temperature scanning tunneling microscopes have been used very successfully for studying not only individual atomic or molecular spins on surfaces but also complexly designed coupled systems. The symmetry breaking of the supporting surface induces magnetic anisotropy which lead to characteristic fingerprints in the spectrum of the differential conductance and can be well understood with simple model Hamiltonians. Furthermore, correlated many-particle states can emerge due to the interaction with itinerant electrons of the electrodes, making these systems ideal prototypical quantum systems. In this manuscript more complex bipartite and spin-chains will be discussed additionally. Their spectra enable to determine precisely the nature of the interactions between the spins which can lead to the formation of new quantum states which emerge by interatomic entanglement.Comment: 46 pages, 21 figure

    Scanning tunneling spectroscopy at the single atom scale

    Get PDF
    This thesis reports measurements at the single atom scale by using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Different sample systems where analyzed with normal conducting and superconducting tips. Chapter 2 presents the theoretical aspects which have to be taken into account for a detailed analysis and a consistent interpretation of the STS measurements. In chapter 3 the creation of a hexagonally ordered superlattice of single Ce adatoms on Ag(111) is reported and understood within a scattering model of the surface state electrons with the adatoms. Furthermore, the change in the local density of states of the surface state in ordered and slightly disordered superlattices is measured and theoretically explained within a tight-binding model which allows to understand the creation and stability of the superlattice by an energy gain of the participating surface-state electrons. Because Ce atoms have a non-vanishing magnetic moment which is expected to interact with the continuous states of the supporting surface leading to a Kondo resonance, chapter 4 presents measurements on single Ce adatoms on different Ag surfaces. This chapter shows the difficulties to interpret the obtained data. For instance, bistable Ce adatoms are detected on Ag(100) which show drastical changes in their apparent height and spectral signature depending on the tunneling conditions. The possible physical processes behind these phenomena are discussed. While the results presented in the first chapters were obtained with a normal conducting tip, chapter 5 intensively discusses the opportunities superconducting tips offer in low-temperature STS measurements. Novel insight in and thorough understanding of Andreev reflection processes are obtained by using the unique possibility of having different superconducting gaps in the tip and the sample. Detailed analyses of the supercurrent at low tunneling resistances reveal tunneling currents which are not described within the standard resistivity shunted junction model, and are presumably due to self-induced tunneling or due to an additional quasiparticle tunneling channel which only exist in asymmetric junctions. Furthermore, the influence of single magnetic Co atoms inbetween the superconducting tunnel junction on the obtained spectrum is discussed

    Structural and magnetic properties of FeMnx_x (x=x=1...6) chains supported on Cu2_2N / Cu (100)

    Get PDF
    Heterogeneous atomic magnetic chains are built by atom manipulation on a Cu2_2N/Cu (100) substrate. Their magnetic properties are studied and rationalized by a combined scanning tunneling microscopy (STM) and density functional theory (DFT) work completed by model Hamiltonian studies. The chains are built using Fe and Mn atoms ontop of the Cu atoms along the N rows of the Cu2_2N surface. Here, we present results for FeMnx_x (xx=1...6) chains emphasizing the evolution of the geometrical, electronic, and magnetic properties with chain size. By fitting our results to a Heisenberg Hamiltonian we have studied the exchange-coupling matrix elements JJ for different chains. For the shorter chains, x≤2x \leq 2, we have included spin-orbit effects in the DFT calculations, extracting the magnetic anisotropy energy. Our results are also fitted to a simple anisotropic spin Hamiltonian and we have extracted values for the longitudinal-anisotropy DD and transversal-anisotropy EE constants. These parameters together with the values for JJ allow us to compute the magnetic excitation energies of the system and to compare them with the experimental data.Comment: 10 pages 8 figure

    Symmetry mediated tunable molecular magnetism on a 2D material

    Full text link
    The induction of unconventional superconductivity by twisting two layers of graphene a small angle was groundbreaking1, and since then has attracted widespread attention to novel phenomena caused by lattice or angle mismatch between two-dimensional (2D) materials2. While many studies address the influence of angle mismatch between layered 2D materials3-5 , the impact of the absorption alignment on the physical properties of planar molecules on 2D substrates has not been studied in detail. Using scanning probe microscopy (SPM) we show that individual cobalt phthalocyanine (CoPc) molecules adsorbed on the layered superconductor 2H-NbSe2 change drastically their charge and spin state when the symmetry axes of the molecule and the substrate are twisted with respect to each other. The CoPc changes from an effective spin-1/2 as found in gas-phase6 to a molecule with non-magnetic ground-state. On the latter we observe a singlet-triplet transition originating from an antiferromagnetic interaction between the central-ion spin and a distributed magnetic moment on the molecular ligands. Because the Ising superconductor 2H-NbSe2 lacks inversion symmetry and has large spin-orbit coupling7 this intramolecular magnetic exchange has significant non-collinear Dzyaloshinskii-Moriya (DM)8, 9 contribution.Comment: 4 figure

    Potential Energy Driven Spin Manipulation via a Controllable Hydrogen Ligand

    Get PDF
    Spin-bearing molecules can be stabilized on surfaces and in junctions with desirable properties such as a net spin that can be adjusted by external stimuli. Using scanning probes, initial and final spin states can be deduced from topographic or spectroscopic data, but how the system transitioned between these states is largely unknown. Here we address this question by manipulating the total spin of magnetic cobalt hydride complexes on a corrugated boron nitride surface with a hydrogen- functionalized scanning probe tip by simultaneously tracking force and conductance. When the additional hydrogen ligand is brought close to the cobalt monohydride, switching between a corre- lated S = 1 /2 Kondo state, where host electrons screen the magnetic moment, and a S = 1 state with magnetocrystalline anisotropy is observed. We show that the total spin changes when the system is transferred onto a new potential energy surface defined by the position of the hydrogen in the junction. These results show how and why chemically functionalized tips are an effective tool to manipulate adatoms and molecules, and a promising new method to selectively tune spin systems

    Quantum Engineering of Spin and Anisotropy in Magnetic Molecular Junctions

    Full text link
    Single molecule magnets and single spin centers can be individually addressed when coupled to contacts forming an electrical junction. In order to control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin center. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin when coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride (h-BN) monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While the hydrogen atoms control the total effective spin, the corrugation is found to smoothly tune the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunneling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy

    Long spin relaxation times in a transition metal atom in direct contact to a metal substrate

    Full text link
    Long spin relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables directly addressing the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have an astonishingly long spin relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes in order to process the spin-information

    Visualizing the 'invisible'

    Get PDF
    The ability of scientists to image and manipulate matter at the (sub)atomic scale is a result of stunning advances in microscopy. Foremost amongst these was the invention of the scanning probe microscope, which, despite its classification as a microscope, does not rely on optics to generate images. Instead, images are produced via the interaction of an atomically sharp probe with a surface. Here the author considers to what extent those images represent an accurate picture of ‘reality’ at a size regime where quantum physics holds sway, and where the image data can be acquired and manipulated in a variety of ways
    • …
    corecore