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Abstract

This thesis reports measurements at the single atom scale byusing low-temperature scan-
ning tunneling microscopy (STM) and spectroscopy (STS). Different sample systems where
analyzed with normal conducting and superconducting tips.

Chapter 2 presents the theoretical aspects which have to be taken into account for a
detailed analysis and a consistent interpretation of the STS measurements.

In chapter 3 the creation of a hexagonally ordered superlattice of single Ce adatoms on
Ag(111) is reported and understood within a scattering model of the surface state electrons
with the adatoms. Furthermore, the change in the local density of states of the surface
state in ordered and slightly disordered superlattices is measured and theoretically explained
within a tight-binding model which allows to understand thecreation and stability of the
superlattice by an energy gain of the participating surface-state electrons.

Because Ce atoms have a non-vanishing magnetic moment whichis expected to interact
with the continuous states of the supporting surface leading to a Kondo resonance, chap-
ter 4 presents measurements on single Ce adatoms on different Ag surfaces. This chapter
shows the difficulties to interpret the obtained data. For instance, bistable Ce adatoms are
detected on Ag(100) which show drastical changes in their apparent height and spectral sig-
nature depending on the tunneling conditions. The possiblephysical processes behind these
phenomena are discussed.

While the results presented in the first chapters were obtained with a normal conduct-
ing tip, chapter 5 intensively discusses the opportunitiessuperconducting tips offer in low-
temperature STS measurements. Novel insight in and thorough understanding of Andreev
reflection processes are obtained by using the unique possibility of having different super-
conducting gaps in the tip and the sample. Detailed analysesof the supercurrent at low
tunneling resistances reveal tunneling currents which arenot described within the standard
resistivity shunted junction model, and are presumably dueto self-induced tunneling or due
to an additional quasiparticle tunneling channel which only exist in asymmetric junctions.
Furthermore, the influence of single magnetic Co atoms inbetween the superconducting
tunnel junction on the obtained spectrum is discussed.

Keywords: Scanning tunneling microscopy (STM), scanning tunnelingspectroscopy (STS),
superlattice, surface state, Kondo effect, superconductivity, Andreev reflections, supercur-
rent
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Résumé

Cette thèse rapporte des mesures faites à l’échelle de l’atome en utilisant la microscopie et la
spectroscopie à balayage par effet tunnel (STM et STS). Différents systèmes d’échantillons
ont été analysés avec des pointes conductrices normale et supraconductrices.

Le chapitre 2 présente les aspects théoriques donc nous devons tenir compte afin d’avoir
une analyse détaillée et une interprétation consistente des mesures de la STS.

Dans le chapitre 3 la création d’un superréseau de configuration hexagonale d’adatomes
de Ce sur une surface d’Ag(111) est rapportée et comprise grâce à un modèle de dispersion
des électrons de la surface avec les adatomes de Ce. De plus nous avons mesuré le change-
ment de la fonction de densité des états locale de l’état de lasurface pour des réseaux
ordonnés et désordonnés et tenté de l’expliquer théoriquement à l’aide d’un modèle de
’tight-binding’ permettant de comprendre la création et lastabilité du super-réseau grâce à
un gain d’énergie des électrons de surface participant au processus.

Parce que les atomes de Ce ont un moment magnétique non-négligeable censé interagir
avec le continuum d’états de la surface de support et par conséquent induire une résonance
de Kondo, le chapitre 4 expose des mesures faites sur des atomes de Ce isolés sur différentes
surfaces d’Ag. Ce chapitre expose les difficultés à expliquer les données obtenues. Par ex-
emple, des adatomes de Ce bistables détectés sur de l’Ag(100) et démontrent des change-
ments drastiques dans leur hauteur apparente et leur signature spectroscopique dépendam-
ment des conditions de tunneling. Nous discutons les processus physiques possibles derrière
ce phénomène.

Alors que les résultats présentés dans les premiers chapitres sont obtenus avec une
pointe conductrice normale, le chapitre 5 discute dans le détail des opportunités qu’offrent
les pointes supraconductrices pour des mesures STS à basse température. Une compréhen-
sion nouvelle et approfondie des processus de réflexion d’Andreev ont été obtenus en uti-
lisant la possibilité unique d’avoir différents gaps supraconducteurs dans la pointe ainsi que
dans l’échantillon. Des analyses détaillées du courant supraconducteur avec de basses ré-
sistances d’effet tunnel révèlent des courants d’effet tunnel qui ne sont pas décrits par le
modèle standard de jonction shuntée avec une résistance. Ils sont vraisemblablement dus à
un effet tunnel self-induit ou à un canal de tunneling de quasiparticules supplémentaire qui
n’existe que dans des jonctions asymétriques. Nous discutons aussi de l’influence d’atomes
de Co magnétique isolés placés entre les jonctions d’effet tunnel supraconducteurs sur le
spectre obtenu.

Mots clés: Microscopie à effet tunnel (STM), spectroscopie à effet tunnel (STS), super-
réseau, état de surface, effet Kondo, supraconductivité, réflexion d’Andreev, courant supra-
conducteur
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Zusammenfassung

In dieser Arbeit werden Messungen vorgestellt, die mit Hilfe der Tieftemperatur-Raster-
tunnelmikroskopie (STM) und -spektroskopie (STS) auf atomarer Ebene gewonnen wur-
den. Dabei sind verschiedene Probensysteme mit normalleitenden und supraleitenden Tun-
nelspitzen untersucht worden.

Die theoretischen Überlegungen, die für eine detaillierteAnalyse und konsistente Aus-
wertung der spektroskopischen Daten unabdingbar sind, werden in Kapitel 2 präsentiert.

Kapital 3 berichtet über die Entstehung von hexagonal geordneten Übergittern aus ein-
zelnen Ce Adatomen auf der Ag(111) Oberfläche, welche mittels der Streuung von Ober-
flächenelektronen an den Ce Adatomen erklärt werden kann. Weiterhin wird die Änderung
der lokalen Zustandsdichte des Oberflächenzustandes in geordneten und leicht ungeord-
neten Übergittern gemessen und innerhalb eines „tight binding” Modells theoretisch be-
schrieben. In diesem Model kann die Entstehung und Stabilität des Übergitters als Folge
des Energiezuwachses der beteiligten Oberflächenelektronen verstanden werden.

Da die Ce Atome ein nichtverschwindendes magnetisches Moment besitzen, werden
Kondo-Resonanzen erwartet, die durch Wechselwirkung mit den kontinuierlichen Zustän-
den der unterliegenden Oberfläche entstehen. Kapitel 4 präsentiert daher spektroskopische
Messungen an einzelnen Ce Adatomen auf unterschiedlichen Ag-Oberflächen. Dabei wer-
den die Schwierigkeiten bei der Interpretation dieser Daten aufgezeigt. So werden zum
Beispiel bistabile Ce Atome auf Ag(100) detektiert, deren spektrale Eigenschaften und
scheinbare Höhe drastisch von den Tunnelparametern abhängen.

Während alle Ergebnisse aus den Kapiteln 3 und 4 mittels normalleitender Spitzen
gewonnen wurden, werden in Kapitel 5 die Möglichkeiten intensiv diskutiert, die sich
mit supraleitenden Spitzen in Tieftemperatur-STS Messungen eröffnen. Die einzigartige
Möglichkeit, unterschiedliche Bandlücken in Spitze und Probe zu präparieren, ermöglicht
ein neuartiges und umfassenderes Verständnis von Andreev-Reflektionen. Die detaillierte
Analyse der Superströme bei niedrigen Tunnelwiderständenenthüllt, daß die Tunnelströme
nicht innerhalb des Standardmodells von einem Tunnelübergang mit Parallelwiderstand (re-
sistivity shunted junction model) beschrieben werden können. Wir vermuten, daß entweder
selbstinduziertes Tunneln von Elektronenpaaren oder zusätzliche Tunnelkanäle für Quasi-
teilchen, welche nur in asymmetrischen Übergängen existieren, die Ursache sind. Des Wei-
teren wird der Einfluss von einzelnen magnetischen Co Atomenin dem supraleitenden Tun-
nelübergang auf das Spektrum diskutiert.
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Chapter 1

Introduction

At the beginning of the20th century, the origin of the electrical transport mechanism in
metals was only partly understood. At that time, one of the main questions was the low
temperature behavior of the electrical resistivity of puremetals and metals containing some
impurities. While it was known that the specific electrical resistivity depends linearly on
the temperature as long as the measurements were performed close to ambient tempera-
tures, the low temperature range could not yet be measured and led to the open question
if the resistivity reaches a finite value, approaches asymptotically zero resistance, or even
increases at temperatures close to the absolute zero.

The idea of having no resistance in metals at zero temperature was based on a model
of elementary vibrations in a solid published byAlbert Einstein[1]. In this model, the
vibrational energy of the atoms depends exponentially on the temperature and should be
zero atT = 0. Thus, it was believed that the electron transport should nolonger be hindered
by movements of the atoms in the metal.

It wasH. K. Onneswho first reached a new temperature regime by successfully lique-
fying helium, a noble gas with a boiling temperature of only4.2 K. Cooling down mercury
to such low temperatures, he found a completely unexpected behavior of the conductivity;
the mercury sample lost suddenly all its resistivity below atemperature of4.2 K [2] (fig-
ure 1.1 (a)). Since then, this effect is called superconductivity and was found in several
metallic elements, alloys and since 1986 additionally in ceramic cuprates [4].

Ferromagnetic metals, such as iron or cobalt, do not show superconductivity. But if
they are diluted as impurities in non-magnetic metals, theyremarkably change the low-
temperature resistance of the hosting metal. For instance,a low concentration of Fe diluted
in Cu reveals a temperature dependence of the resistivity which increases instead of de-
creases below a certain temperature (figure 1.1 (b)).

The origin of both effects remained unsolved for a long-timebecause they are the re-
sult of complex collective phenomena between the many electrons of the atoms in a solid.
Nowadays, we have understood these phenomena due to the pioneering work ofJ. Bardeen,
L. N. Cooper, andJ. R. Schriefferwho explained the superconducting state as a long-range
attractive interaction between the conducting electrons (chapter 5.1.2) [5], andJ. Kondo
who showed that the increase in resistivity, as seen in figure1.1 (b), can be explained with
spin-flip processes between the localized magnetic moment of the impurities and the elec-
trons of the host (chapter 4.1.1) [6]. Today, this effect is called the Kondo-effect.

In this thesis we discuss these phenomena and their interactions on the single atom scale
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Figure 1.1: (a): The resistivity of mercury (Hg) measured atvery low temperatures by
H. K. Onnes shows a sudden drop at the critical temperatureT = 4.2 K [2]. (b): Samples
containing magnetic impurities (Fe) diluted in a non-magnetic metal (Cu) show an increase
in resistivity below a concentration-dependent temperature [3].

with the help of a powerful tool, the scanning tunneling microscope (STM). The STM,
which soon celebrates its 25 anniversary, has the unique capability to image surfaces and to
characterize the electronic properties with atomic resolution (chapter 2).

We show that single cerium (Ce) adatoms can interact with each other indirectly by scat-
tering processes of electrons at the adatoms. The electronsoriginate from a two-dimensional
electron gas which exists on the Ag(111) surface and moderates the long-rage interaction
which leads to the creation of hexagonal ordered structuresof adatoms on the surface at low
temperatures (chapter 3).

The Kondo effect and the difficulties of its clear detection on single Ce adatom is the
subject of chapter 4. Measurements using superconducting tips are shown in chapter 5. In
this last chapter, not only new aspects of the current transport between two superconductors
are observed and discussed (chapter 5.4 and 5.6), but first results are additionally presented
which show the interplay between a single magnetic adatom and the superconductivity of
sample and tip. (chapter 5.5).

Not all results presented in this thesis are in their complexity well understood. They
remain open with the strong belief to be answered in further experimental investigations.



Chapter 2

Scanning tunneling microscopy and
spectroscopy

When in 1981G. Binnig, H. Rohrer, Ch. Gerber, andE. Weibelpresented for the first time
their idea of a scanning tunneling microscope (STM) [7], they opened a door to a new and
powerful tool for the analysis of surfaces. Shortly after, they demonstrated the capability of
the STM to image metal surfaces with atomic resolution [8] and showed that this new tool
is able to answer complex physical questions. In particularthey could resolve the famous
7 × 7 reconstruction of the Si(111) surface in real space [9].

Following these revolutionizing results, a rapid development started that led to a multi-
tude of investigations using the STM. Furthemore, several related methods have since been
developed, such as for example the atomic force microscope (AFM) [10], the scanning-
nearfield optical microscope (SNOM) [11], the magnetic force microscope (MFM) [12],
and the ballistic-electron-emission microscope (BEEM) [13].

All of these techniques have in common that they use aprobeto observe locally physical
properties down to atomic lateral resolution. The data is thereby obtained byscanninga grid
of points on the surface and combining the detected physicalproperties into an image using
the data to code each point of the image. Because of this scanning mechanism, all these
techniques are summarized as scanning probe microscopes (SPM).

The purpose of this chapter is to give a short introduction tothe STM, focusing mainly
on its spectroscopic capabilities.

2.1 Principles

The STM uses the tunneling effect to obtain a current betweena sharp tip and the sample
by applying a voltage between both of them. Although classically forbidden, but already
considered since the early days of quantum mechanics [14] and observed in the beginning
of the 1960’s in planar junctions [15, 16], a current can be detected before tip and sample
come into contact. This tunneling current is held constant by processing it in an electrical
feedback loop that compares it to a preset current and then varies the distance between tip
and sample accordingly, i. e. moving the tip towards or away from the sample. When the tip
is scanned over the surface, the tip height is determined by the local geometric and electronic
structure of the surface and thus produces a surface map in real space (see figure 2.1 (a)).
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Figure 2.1: (a): Schematic representation of the tunnel junction. An atomically sharp tip
scans over a surface. Only the last atom of the tip significantly contributes to the tunneling
process. (b): Schematic view of the tunneling process between an ideal tip with flatρt and
a sample with a LDOS ofρs(E). When a positive voltageVT is applied to the sample with
respect to the tip, electrons from occupied tip states (right-hand side) are able to tunnel into
unoccupied sample states (left-hand side). Therefore theymust overcome an approximately
trapezoidal tunnel barrier formed by the two work functionsof tip and sample andeVT .

Quantum mechanically, the system can be rationalized with the help of a one-dimensional
simplification, where the sample as well as the tip are described by an ideal metal in which
the electron states are filled up to the Fermi energyEF . The two electrodes are separated
by a small vacuum gapz0. An applied voltageVT shifts the two Fermi energies byeVT

relatively to each other. We will use the convention that a positive tunneling voltageVT

increases the energy in the tip. The distancez, the two work functionsΦs andΦt from tip
and sample, andeVT represent a trapezoidal tunnel barrier for the electrons (figure 2.1 (b)).
From elementary quantum mechanics (see for example [17]), an electron in the tip (z = 0)
at Fermi energy, represented by its wavefunctionψ(z), has a finite probability of being
localized in the sample at the positionz:

|ψ(z)|2 = |ψ(0)|2e−2κz, κ =

√
m0

~2
(Φt + Φs − eVT ). (2.1)

Using the free electron mass form0, and realistic values for the work functionsΦ ≈ 4−5 eV
[18], 2κ becomes of the order of20 nm−1, i. e. a variation inz of 0.1 nm results in an
order of magnitude difference in the tunneling probability. This sensitivity in the tip-sample
distance is the reason for the extremely high vertical resolution of the STM which can reach
the sub-picometer regime.

Introducing the concept of thelocal density of states(LDOS), i. e. the density of states
per energy interval at a specific position:

ρ(~r,E) =
∑

υ

|ψυ(~r)|2δ(Eυ − E), (2.2)
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one can express the tunneling current from tip to sample by [19]:1

It→s =
4πe

~

∞∫

−∞

ρt(ǫ− eVT )ρs(ǫ)ft(ǫ− eVT ) (1 − fs(ǫ))
∣
∣
∣M(ǫ− eVT , ǫ)

∣
∣
∣

2
dǫ. (2.3)

In this formulaf(ǫ) denotes the temperature dependent Fermi-Dirac distribution f(ǫ) =
(1 + exp [ǫ/kBT ])−1 for the electrons, andM(ǫt, ǫs) the tunneling matrix element, i. e the
coupling between the electron wavefunctions at the energyǫt in the tip with the sample
wavefunctions atǫs. In the one-dimensional simplification as in equation 2.1,|M |2 is given
by:

∣
∣
∣M(ǫ− eVT , ǫ)

∣
∣
∣

2
= exp

[

−2z

√
me

~2
(Φt + Φs − eVT + 2ǫ)

]

. (2.4)

As it can be seen, the current depends linearly on the LDOS of tip and sample, whereby
the Fermi-Dirac distributions ensure that only occupied states in the tip(ft(ǫ − eVT )) and
unoccupied states in the sample(1−fs(ǫ)) are counted for the tunneling from tip to sample.
Of course, for the whole tunneling currentIT , one has to take into account the current in
both directions from tip to sample as well as from sample to tip. After trivial summation,
the result is:

IT =
4πe

~

∞∫

−∞

ρt(ǫ− eVT )ρs(ǫ) (ft(ǫ− eVT ) − fs(ǫ))
∣
∣
∣M(ǫ− eVT , ǫ)

∣
∣
∣

2
dǫ. (2.5)

Notice that due to equation 2.4 the highest contribution in the current comes from electronic
states close to the Fermi energies of the tip (VT > 0) or the sample (VT < 0) (see schematic
representation in figure 2.1).

Although equation 2.5 is easy to understand, the main problem is the determination of
the tunneling matrix elementM in a more realistic approximation than in the simple one
dimensional model. The matrix element depends on the geometric position in space of the
atoms in the sample and in the tip as well as the wave functionsat the given energies. Since
the main task for the STM is to produce an image of the sample surface, one is looking
for a configuration where the tip DOS can be neglected. But, unfortunately, in most cases
the actual geometric and chemical structure of the tip is unknown (despite some efforts to
determine the structure of the tip by field-ion microscopy before using them in STM [20])
leading to an unknown tip DOS.

Shortly after the invention of the STM,J. TersoffandD. R. Hamannpresented a cal-
culation using first-order perturbation theory [21] which gave an analytical result for the
matrix element [22, 23] in a heavily simplified tunneling system as a representation for the
STM. In particular, they solved the problem for an atomically sharp tip, where only the last
atom, i. e. the atom that is closest to the sample surface, contributes to the tunneling process.
The wavefunction of this atom (the interacting one) is therefore described by a spherical,
s-like orbital. The density of states over the energy interval of interest is assumed to be con-
stant. Taking only elastic tunneling processes into account, i. e. energy conservation during
tunneling (for inelastic processes see chapter 2.3.3), thetunneling matrix element is written

1Here and in the following the energies are referred relativeto the Fermi-energy of sample and tip.
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in low voltage approximation as:

Mµν = −2πC~
2

κme
· ΨS

µ(~r), with: C = constant (2.6)

κ = as in equ. 2.1.

This Tersoff-Hamann tunneling matrix element only dependson the position of the out-
ermost atom of the tip at~r, and not on the wavefunction of the tip. Using equation 2.5,
setting the temperatureT → 0, and restricting ourself to voltages|V | ≪ Φ/e we resolve
the widely used expression for the tunneling current in STM:

IT =
16π3C2

~
3e

κ2m2
e

ρt

eVT∫

0

ρs(ǫ)dǫ. (2.7)

2.2 Imaging in constant-current mode

As shown in the last section, the tunneling current depends exponentially on the tip-sample
distance. Thus, scanning the tip laterally over the sample results in a modulation of the
current, corresponding to the surface corrugation. But with a tip-sample distance of usually
≤ 1 nm even small mechanical instabilities in the STM or steps onthe surface would result
in a crash of the tip into the surface. Thereby, imaging in theso-called constant-height mode
is only applicable on flat surfaces and for small scan areas. To overcome these limitations
in most STM experiments the constant-current mode is used toobtain the structure of the
surface.

In this imaging mode the tunneling current is held constant by changing the tip-sample
distancez. In that way, the recorded changes in thez value give a direct image of the
surface. The image depends, therefore, on the applied tunneling voltageVT and the preset
tunneling currentIT . The tip scans a constant-value surface determined byIT : the LDOS of
the sample integrated over the energy windowEF ≤ E ≤ EF + eVT according to equation
2.7 and figure 2.1 (b). Both the bias voltageVT and the preset tunneling currentIT are inde-
pendent parameters in the experiment. Depending on the polarity of VT , occupied (VT < 0)
or unoccupied states (VT > 0) in the sample are recorded [24], whileIT for constantVT

determines the tip height. On metallic samples, with their approximately constant density
of states aroundEF , the obtained images correspond to the geometric surface topography
[25], but the correct analysis of the STM image is not always an easy task even on well
known clean metallic surfaces, because the LDOS might be affected by, for example, sur-
face state modulations [26]. Additionally the Tersoff-Hamann approximations might fail as
illustrated in figure 2.2. Here the tip has changed during theexperiment in such a way that
not only the last atom contributes to the tunneling current.Therefore, in the right panel the
STM resolves the geometric structure of the tip observed by the adatoms of the sample, i. e.
the convolution of the tip geometry with the surface structure.

To conclude, even if the beauty of STM topographic images lies in the direct observation
of the atomic structure of the sample, one has to be aware thatthe underlying physical
description is rather complex and even after 25 years not accessible in all of its details.
Thus, we are compelled to use strong simplifications to extract physical meanings out of
our experiments.
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Figure 2.2: Topographic images (8.1 × 7.8 nm2) measured at a temperature of 5 K with
VT = −37 mV andIT = 400 pA showing the influence of the tip on the observations. Left
side: 5 Co atoms on a clean Ag(100) surface. Right side: Sincethe tip has changed between
the two measurements, the same atoms appear now with a shape similar to a 3-fold flower
due to a convolution between the geometric structure of tip and sample.

2.3 Spectroscopy

One of the most fascinating potentials of the STM is its capability to obtain spectroscopic
data with its atomic resolution. As we will see in this section, the STM allows us to measure
directly the LDOS and, additionally, inelastic processes where the tunneling electrons excite
states in the sample during the tunneling process by loosingpartly their kinetic energy.

Since the main results presented in this thesis are obtainedwith the help of spectro-
scopic measurements, the description of this technique andthe physical interpretation will
be discussed in detail.

Taking the tunneling current as expressed in equation 2.5 but with the restriction that
the tunneling matrix element stays constant (i. e. the energy eVT is small compared to the
work functionsΦ in tip and sample, so that the tunneling matrixM in equation 2.4 changes
only negligibly)2 we get:

IT ∝
∞∫

−∞

ρs(ǫ)ρt(ǫ− eVT ) (ft(ǫ− eVT ) − fs(ǫ)) dǫ. (2.8)

We calculate the first derivative of the tunneling currentIT with respect to the applied bias

2In addition, any changes in the attributes of the electrons in tip and sample, such as spin and orbital state,
are neglected.
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voltageV :

∂IT
∂V

∣
∣
∣
∣
VT

∝
∞∫

−∞

dǫ
[

− ρs(ǫ)ρ
′
t(ǫ− eVT )ft(ǫ− eVT ) (2.9)

−ρs(ǫ)ρt(ǫ− eVT )f ′t(ǫ− eVT )

+ρs(ǫ)ρ
′
t(ǫ− eVT )ft(ǫ− eVT )fs(ǫ)

]

.

Theρ′t means the first derivative of the LDOS in the tip with respect to the energy:

ρ′t(ǫ) =
∂ρt(ǫ)

∂ǫ
, (2.10)

while

f ′(ǫ) =
∂f(ǫ)

∂ǫ
=

− exp (ǫ/kBT )

kBT (1 + exp (ǫ/kBT ))2
=

−1

2kBT
sech2(ǫ/kBT ) (2.11)

is the first derivative of the Fermi-Dirac distribution function.3

While equation 2.9 is quite complicated, it can be simplifiedassuming a constant LDOS
of the tip, i. e.ρ′t ≡ 0, and a temperature of the junction of zero, so thatf ′(ǫ)kBT→0 = −δ(ǫ)
becomes the delta distribution. With these assumptions, the first and third sum in 2.9 vanish
and the derivative of the tunneling current becomes:

∂IT
∂V

∣
∣
∣
∣
VT

∝ ρt

∞∫

−∞

ρs(ǫ)δ(ǫ − eVT )dǫ = ρtρs(eVT ). (2.12)

Thus, the derivative∂IT /∂V provides a value that is proportional to the LDOS in the
sample at the energyeVT . Technically, the tip is placed over the point of interest onthe
sample surface with chosenVT andIT which determine the tip-sample distancez. Then the
tunneling voltage is ramped while the feedback loop is opened, i. e.z stays constant, and
the current is recorded. With thisIT (V ) data the LDOS can be calculated numerically.

Unfortunately, the tunneling current is often too noisy to obtain reasonable data with
this numerical method. In most tunneling spectroscopy experiments adIT /dV signal is
detected with the help of a Lock-In technique.

2.3.1 Using the Lock-In technique

To obtain spectroscopic data with high signal to noise ratio, the tunneling voltageVT is
modulated with a small sinusoidal voltageVm sin(ωmt). The modulation frequencyfm =
ωm/2π is thereby set to much higher values as the regulation speed of the feedback loop
that holds the tunneling current constant in closed-loop mode, thus it is guaranteed that
the modulation does not influence the recording of constant-current images. Now when a
spectrum is taken – meaning that the tip is stabilized over a point of interest, the feedback

3 Notice that, due to the symmetry of equation 2.8, the indicesfor tip and sample are interchangeable in
equation 2.9 when invertingVT .
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Figure 2.3: (a): A small modulation of the tunneling voltageresults in an alternating current
(AC) modulation ofIT . The amplitude of this modulation depends therefore on the slope of
theI(V ) curve. Thus it is proportional to the first derivativedI/dV of the tunneling current.
(b): Schematic representation of a phase and frequency sensitive Lock-In amplifier.

loop is opened, and the tunneling voltageVT is ramped – we get a tunneling current using
the Tersoff-Hamann approximation (equation 2.7) of:

IT ∝
∫ eVT +eVm sin(ωmt)

0
ρs(ǫ)dǫ. (2.13)

Expanding the current in a Taylor series:

IT ∝
∫ eVT

0
ρs(ǫ)dǫ

︸ ︷︷ ︸

∝IT (VT )

+ ρs(eVT )
︸ ︷︷ ︸

∝I′T (VT )

eVm sin(ωmt) + ρ′s(eVT )
︸ ︷︷ ︸

∝I′′T (VT )

e2V 2
m

2
sin2(ωmt) . . . , (2.14)

we see that in a first approximation the amplitude of the current modulation with a frequency
fm = ωm/2π at the tunneling voltageVT is proportional to the first derivative of theI(V )
curve atVT and therefore proportional to the LDOS in the sample (see figure 2.3 (a)).

Usually, the tunneling current is disturbed by a wide-band current noise originating
from mechanical vibrations in the tunnel junction and thermal noise generated in the first
amplifier, the current-voltage converter. Thus, aLock-In amplifier is used to measure the
modulation ofIT . Schematically represented in figure 2.3 (b), it contains asthe essential
part a multiplier. The amplified current signal is multiplied with a reference signal taken
directly from the modulation generator and phase shifted byϕ. Taking into account the
noise, the output of the multiplier results in:

sin(ωmt+ ϕ)
︸ ︷︷ ︸

reference

×







ρs(ǫ)eVm sin(ωmt+ ϕ0)
︸ ︷︷ ︸

signal

+

∫ ∞

0
aω sin(ωt + ϕω)dω

︸ ︷︷ ︸

noise








(2.15)

=
1

2
ρs(ǫ)eVm

[

cos(ϕ− ϕ0) + cos(2ωmt+ ϕ+ ϕ0)
]

+ . . . ,
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with aω andϕω as the the amplitude and phase of the noise at the frequencyf = ω/2π. As
it can be seen, only the contribution of the input signal thathas exactly the same frequency
as the reference is mixed down to a direct-current signal depending only on the phase angle
ϕ − ϕo. All overlying noises with broad frequencies and uncorrelated phases with respect
to the reference are filtered out by the frequency low-pass. Thus, the output of the Lock-In
is directly linear to the modulation amplitude and the LDOS of the surface.

To summarize, the main goal of the modulation technique together with the detection by
a Lock-In amplifier is to measure electronically the first derivative dI/dV of the tunneling
current and to transpose the signal of interest from zero frequency to the frequency of the
modulationfm. With this method the1/f (Schottky) noise is obviously strongly suppressed,
while it is the main source of noise in numerically calculated dI/dV curves.

Unfortunately, this method has also its drawbacks. In real experiments, the wires that
connect the sample and the tip with the electrical setup and the tip-sample geometry form
a capacitanceCp which lets a parasitical AC currentIp = Cp

dV
dt flow across the junc-

tion independently of the tunneling process. Due to the capacitance, this current is phase
shifted by 90̊ with respect to the modulation of the tunneling current overthe junction
which behaves like an ohmic resistorRT = VT /IT . Even though this current should not
affect the output signal of the Lock-In because of the phase sensitivity of equation 2.15, in
measurements where the tunnel junction resistivityRT is high compared to the apparent
resistanceXC = (ωmC)−1 of the capacitance the amplitude of the crosstalk signal can
overcome the signal of interest by several orders of magnitude. Assuming, for example, a
setpoint current of 20 pA at a tunneling voltage of 100 mV remaining in a junction resis-
tance ofRT = VT /IT = 5 GΩ, and a modulation amplitude ofVm = 10 mV at 2 kHz,
a crosstalk capacity of 2 pF, i. e.XC = 40 MΩ, would lead to a parasitical AC current of
Vm/XC = 25 pA, while the signal of interest is only of the order ofVm/RT = 2 pA.

Obtaining accurate spectroscopic data under such conditions depends crucially on the
correct phase adjustment between reference input and signal input, because even a small
misalignment would result in a strong background in the output signal of the Lock-In. Ad-
ditionally, the crosstalk signal reduces the usable dynamic range of the Lock-In so that a
compensation circuit, which annihilates the capacity crosstalk signal before it is amplified
and detected by the Lock-In is recommended. For that, a variable 180̊ phase-shifted signal
of the modulation voltage is applied via a small capacitanceCcomp & Cp and added to the
tunneling current as seen in figure 2.4. With the variable gain α < 0 the compensation cur-
rent Icomp = αCcomp

dV
dt is adjusted to annihilate the crosstalk current, i. e.−Icomp = Ip.

Thus, all crosstalk induced disturbances are removed before the tunneling current enters the
current-voltage converter and before it is processed in theLock-In.

Furthermore, the use of the Lock-In and the modulation technique has an additional
disadvantage. Due to the modulation of the tunneling voltage, the energy resolution is
limited. The componentIω, i. e. the first Fourier coefficient of the current functionI =
I(VT + Vm sin(ωmt)) developed in terms ofωm:

Iω =
1

π

π∫

−π

I(VT + Vm sin(τ)) cos(τ)dτ, (2.16)

averaged over time is the output of the Lock-In. Partially integratingIω leads to theinstru-
mental resolution functionFm = 2

πℜ
√

V 2
m − ǫ2/V 2

m of the Lock-In [27]. In other words,
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Figure 2.4: Crosstalk compensation during spectroscopic measurements. Due to the un-
avoidable coupling between the modulated tunneling voltage and the currentIT by the
parasitic capacityCp, a compensation by a 180˚phase shifted signal overCcomp is helpful
to detect small current signals.

our detecteddI/dV signal is a convolution of the LDOSρS in the sample and the instru-
mental resolution function:

dI

dV
(VT ) ∝ (ρs ∗ Fm)(VT ) =

2

πVm

Vm∫

−Vm

ρs(e(VT + ǫ))
√

V 2
m − ǫ2 dǫ. (2.17)

To give an idea of this broadening, we assume a perfectly flatρs with the exception of one
infinitely sharpδ-like peak at a certain energy. As it can be seen in figure 2.5 theδ-like peak
is broadened to a half-sphere with a width of2eVm.

To summarize, as long as the modulation voltageVm is significantly smaller than the
characteristic spectral feature, the broadening can be neglected. Otherwise one has to per-
form a deconvolution of the modulation and the LDOS to obtainthe correct physical prop-
erties [28].

2.3.2 Influence of the finite temperature

Up to now we have assumed a junction temperature of zero to simplify the deduction of
a model for tunneling spectroscopy. But often the resolution limit is determined by the
finite temperature in the experiment. Using equation 2.9 from page 8 with the constraint of
constant LDOS in the tip we get for the first derivative∂I/∂V :

∂I

∂V

∣
∣
∣
∣
VT

∝ ρt

∞∫

−∞

ρs(eVT + ǫ) sech2
(

ǫ

kBT

)

dǫ. (2.18)
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Figure 2.5: Visualization of the influence of the modulationon the resolution of obtained
spectroscopic data. Assuming a perfectly flat LDOS in the sample with only one infinitely
sharp peak (left panel) the modulation broadens this peak toa half-sphere with a width of
2eVm (right panel).

The LDOS of the sample is convoluted with a hyperbolic secantfunction, which smears
out all spectroscopic features.4 In figure 2.6, the∂I/∂V curve for an infinitely sharpδ-like
peak in the LDOS is calculated. It shows a Gaussian-like broadening with a full width at half
maximum (FWHM) of3.2kBT . At ambient conditions ofT = 300 K, the energy resolution
would be limited to only∆E ≈ 80 meV, while in low-temperature STS measurements the
resolution is strongly enhanced and can reach the sub-millielectronvolt region.

In realistic high resolution spectroscopic experiments with Lock-In detection (see pre-
vious section 2.3.1), the signal is not only broadened by thetemperature but additionally by
the modulation voltage. Thus, the detected Lock-In signal has to be calculated by convolut-
ing the temperature broadening functionFT = sech2(ǫ/kBT ) as well as the instrumental
resolution functionFm (equation 2.17) with the LDOSρs of the sample:

dI

dV
(VT ) ∝ (ρs ∗ FT ∗ Fm)(eVT ). (2.19)

Using the temperature as fitting parameter in well known spectra (for example the BCS
quasi-particle gap (see chapter 5)) can result in surprisingly high temperatures, higher than
the base temperature of the STM. The reason is that even equation 2.19 does not include
broadening due to noise in the power supply ofVT and offset-voltage noises in the current-
voltage converter. As long as these noises are random they can be included in 2.19 by using
an effective temperature: Teff :=

√

T 2 + T 2
n , with Tn asnoise temperatureoriginating

from the electrical setup. Often these noises are the main source of broadening especially if
periodical signals (for example multiples of the line frequency due to ground loops or high
frequency signals from telecommunication transmitters (broadcast, cellular, etc.)) couple
into the tunneling current or voltage.

4Remarkably, only the temperature of the tip and not of the sample influences the resolution when assuming
constant LDOS in the tip, although tip and sample are usuallyin thermal equilibrium. Otherwise the temperature
difference would lead to a thermo-voltage between tip and sample [29] which can be experimentally used to
detect very sensitively the derivative of the LDOS atEF [30].
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Figure 2.6: Visualization of the influence of the temperature on the resolution of obtained
spectroscopic data. Assuming a perfectly flat LDOS in the sample with only one infinite
sharp peak (left panel) the temperatureT broadens this peak to a Gaussian-like peak with a
FWHM of 3.2kBT (right panel).

2.3.3 Inelastic electron tunneling spectroscopy

The goal of inelastic electron tunneling spectroscopy (IETS) is the detection of processes
in which the tunneling electron looses partly its kinetic energy during the tunneling process
between tip and sample. As schematically represented in figure 2.7, electrons with a suffi-
cient kinetic energy have the possibility to excite internal states in, for example, adsorbates
on the surface. After losing partly their kinetic energy, the electrons still must have enough
energy to enter the electrode to be detected.

In planar tunnel junctions, IETS measurements were alreadyperformed approximately
40 years ago to detect vibrational excitation modes [31, 32,33]. Because of the high lat-
eral resolution in STM experiments which makes it possible to address individual atoms
or molecules on surfaces, it is very appealing to perform measurements to detect inelastic
processes. Additionally, in STM the characteristics of theadsorbate are much better de-
fined and can be checked easily with the STM in contrast to planar tunnel junctions where
the molecule is embedded in an ill-defined environment not accessible for direct studies. In-
deed, there are also other techniques which have the capability to observe vibrational spectra
– such as high resolution electron energy-loss spectroscopy (HREELS), infrared reflection-
adsorption (IRRAS) or (micro)Ramanspectroscopy – but only IETS has the advantage of
imaging directly within the same experiment the atom or molecule under test.

Even if in the early days of STM collective vibrational excitations at the surface of
graphite where detected [34], it is only recently that measurements have been performed
on a single molecular level to detect molecular vibrations [35, 36, 37, 38, 39] and even the
spin flip of single atoms [40]. To understand the influence of additional inelastic tunneling
channels on the obtained spectra, we will present in short a model that mainly follows the
idea of [41] and its application to STM [42]:
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Figure 2.7: Schematic view of the inelastic tunneling process: In addition to the elastic
tunneling current, an additional inelastic channel may exist where an electron crosses the
barrier losing partly its energy by exciting an internal state in, for example, an adsorbate on
the surface.

IETS without saturation:

The additional inelastic tunneling channel arises due to the fact that an electron with a ki-
netic energy|eVT | ≥ Ei excites, for example, a vibrational mode in a molecule adsorbed on
the sample surface. As we have seen in section 2.3, the contribution of the elastic tunneling
currentIe is linear to the applied tunneling voltageVT . Above the threshhold ofEi/e, the
additional inelastic currentIi flows in first approximation linearly to the reduced voltage
VT −Ei/e when assuming a lifetimeτex of the excited state much smaller than the average
time between two tunneling processes5, i. e. τex ≪ e/IT ,. For the overall tunneling current
IT = Ie + Ii we get:

IT = σeVT +
σi

e

∞∫

−∞

(
f(ǫ− eVT + Ei)(1 − f(ǫ))
︸ ︷︷ ︸

t→s

+ f(ǫ)(1 − f(ǫ− eVT − Ei))
︸ ︷︷ ︸

s→t

)
dǫ.

(2.20)
The conductancesσe andσi stand for the elastic and inelastic linear conductance, respec-
tively, whilef(ǫ) is the Fermi-Dirac distribution function as defined on page 5. Here we can
not use the simplification as in equation 2.5. Instead we haveto take into account tunneling
in both directions from tip to sample (t → s) as well as from sample to tip (s → t) using
the Fermi-Dirac distributions. The integral in 2.20 can be solved analytically [41]:

IT = σeVT + σi





(

VT − Ei
e

)

f̃(eVT − Ei)

f̃(eVT − Ei) − 1
+

(

VT + Ei
e

)

f̃(−eVT − Ei)

f̃(−eVT − Ei) − 1



 , (2.21)

with the shorthand̃f(ǫ) = exp(ǫ/kBT ). The current-voltage curve in the zero temperature
limit is shown in figure 2.8 (a). Calculating the first derivative with respect to the tunneling

5With this restriction, we assure that the tunneling electrons always find the system in its ground state.
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Figure 2.8: (a): Current-voltage relation of an inelastic tunneling process. An additional
tunneling channel opens when the tunneling voltage exceedsthe threshhold|eVT | ≥ Ei.
The current (full line) consists of an elastic (dashed line)and an inelastic (dotted line) con-
tribution. (b): dI/dV (upper curve) anddI2/d2V (lower curve) spectra of an inelastic
tunneling process. Symmetrically aroundEF a step like structure is detected in thedI/dV
curve, smeared out due to the finite temperature (dashed line). In thedI2/d2V curve peaks
with a width of5.4kBT occur.

voltage results in:

∂IT
∂V

∣
∣
∣
∣
VT

= σe + σi

∞∫

−∞

(
f ′(ǫ− eVT + Ei)(f(ǫ) − 1) + f(ǫ)f ′(ǫ+ eVT + Ei)

)
dǫ,

(2.22)
and

∂IT
∂V

∣
∣
∣
∣
VT

= σe + σi






f̃(eVT − Ei)
(

f̃(eVT − Ei) − 1 − eVT−Ei
kBT

)

(

f̃(eVT − Ei) − 1
)2 +

f̃(−eVT − Ei)
(

f̃(−eVT − Ei) + 1 + eVT +Ei
kBT

)

(

f̃(−eVT − Ei) − 1
)2




 . (2.23)

Surprisingly, equation 2.23 can be simplified with an acceptable error (< 0.5%) to a more
handy function:

∂IT
∂V

∣
∣
∣
∣
VT

= σe + σi

(
f̂(−eVT + Ei) + f̂(eVT + Ei)

)
, (2.24)

with f̂ as a modified Fermi-Dirac distribution:̂f(ǫ) = (1 + exp[ǫ/1.46kBT ])−1. The
resultingdI/dV curve shows a step-like increase in the conductivity symmetrically around
EF at±Ei (see figure 2.8 (b)).
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Furthermore, performing the second derivation results in peaks at±Ei:

∂2IT
∂V 2

∣
∣
∣
∣
VT

= eσi

(
f̂ ′((−eVT + Ei)) + f̂ ′((eVT + Ei))

)
, (2.25)

which are schematically sketched in figure 2.8 (b). The broadening due to the finite temper-
ature is therefore5.4kBT [41].

The d2I/dV 2 signal can be easily detected with the Lock-In technique (see section
2.3.1) as shown in equation 2.14 on page 9 when using as reference for the Lock-In2×ωm.
As for thedI/dV -measurement, the modulation of the voltage additionally broadens the
detected signal by an instrumental resolution function of [27]:

Fm ∝ ℜ(e2V 2
m − ǫ2)3/2. (2.26)

IETS with saturation:

If the assumption we made in the beginning of this section is not fulfilled, i. e. the lifetime
of the excited state is comparable or longer than the averagetime between two tunneling
processesτex ' e/IT , the obtained spectra can change drastically.

As it was shown in reference [43], the conductance of the system for|eVT | > Ei can be
described with an average conductance:

σ = ngσg + nexσex, ng + nex = 1, (2.27)

with the two conductancesσg andσex of the ground and excited state, respectively, and the
average fractional occupations of the systemng (ground state) andnex (excited state). The
current-voltage relation, which we will treat for simplification only for positive voltages,
can now be written in the zero-temperature limit as the following:

IT (VT ) = σgVT for eVT < Ei,

IT (VT ) = (ngσg + nexσex)VT
︸ ︷︷ ︸

elastic

+ngσup(VT − Ei/e) + nexσdownVT
︸ ︷︷ ︸

inelastic

for eVT ≥ Ei.

(2.28)

The first part of the sum contains elastic contributions to the tunneling current, while in-
elastic current contributions are added in the second part originating from the transfer of the
system from ground to excited state (ngσup(VT −Ei/e)) and from relaxation of the excited
state by inelastic scattering (nexσdownVT ). The fractional occupation in the excited state
nex calculated as:

nex = 0 for eVT < Ei,

nex =
τ−1
g

τ−1
g + τ−1

ex
=

σup(eVT − Ei)

σup(eVT − Ei) + σdowneVT + e2S
for eVT ≥ Ei,

(2.29)

with τg andτex as the average lifetime of the ground and excited state, respectively. Spon-
taneous relaxation of the system from excited to ground state is thereby included into the
lifetime τex by the relaxation rateS.
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After substitution of equations 2.27 and 2.29 into equation2.28, one obtains for the
differential conductance [43]:

∂IT
∂V

∣
∣
∣
∣
VT

= σg for eVT < Ei,

∂IT
∂V

∣
∣
∣
∣
VT

= A+
B

(

1 + VT −Ei/e
Γ

)2 , for eVT ≥ Ei, (2.30)

with the parametersA, B, andΓ as:

A =
σup(σex + σdown) + σdown(σg + σup)

σup + σdown
, (2.31)

B = σup
(σupEi − e2S)(σex − σg) + 2σupσdownEi + e2S(σup − σdown)

(σdownEi + e2S)(σup + σdown)
, (2.32)

Γ =
σdownEi + e2S

e(σup + σdown)
. (2.33)

The resulting spectra depend strongly on the parameters of the system. The inelas-
tic tunneling spectrum without saturation, as discussed inthe previous paragraph, can be
recovered from the presented model when assumingτg ≫ τex, i. e. Idown + eS ≫ Iup,
wherebyIdown = σdownVT and Iup = σup(VT − Ei/e) are the current contributions to
relax and excite the state, respectively. While the currents Iup,down have to be smaller than
IT , this is equivalent toeS ≫ IT . Under these assumptions equation 2.29 results inng ≈ 1
andnex ≈ 0 and equation 2.28 has the same form as equation 2.20 (in theT = 0 limit) with
the commutationσg ≡ σe andσup ≡ σi.

When the system has a sufficiently small relaxation rateS, the spectrum becomes asym-
metric around±Ei. As schematically shown in figure 2.9 strong peaks or dips occur in the
spectra when crossing the threshold|eVT | = Ei. Assuming a conductivity of the excited
state equal or larger than the conductivity of the ground state, i. e.σex ≥ σg, the spectra
reminds us of the quasiparticle excitation spectrum in a superconductor (see chapter 5) as
drawn in figure 2.9 (a) forσex/σg = 3.

On the other hand, dips occur when assuming a sufficiently smaller conductance in
the excited state then in the ground state which might even result in negative differential
resistance (NDR). This is schematically presented in figure2.9 (b).

A smaller conductance in the excited state of the system compared to the ground state
might surprise, but can be understood by, for example, a change in the geometrical configu-
ration of an adsorbed molecule [44]. Thus, the presented model has the additional advantage
of being applicable on two-state systems with switching times, i. e. lifetimes of the ground
and excited state much higher than the normal self-relaxation timeS which lies in the ns
and fs region. Under conditions whereτg andτex reach accessible timescales (µs-ms) for
STM, the switching can be directly recorded and thusng, nex are calculable with equation
2.29 [44, 43].

Additionally, even timescales much shorter than inIT (t) measurements directly acces-
sible can be analyzed by varying the setpoint currentIT and thus the number of tunneling
electrons per second. IETS is applicable within a tunnelingcurrent of approximatively
20 pA < IT < 100 nA, corresponding to1 × 108 − 5 × 1011 electrons per second or an
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Figure 2.9: SimulateddI/dV spectra for inelastic tunneling with saturation. (a): A BCS-
like spectrum with peaks ateVT = ±Ei can occur whenσex > σg. The graphic shows a
simulation using equation 2.30 with the parametersA = 1.1, B = 6.0, andΓ = 0.35 [arb.
units], calculated forσex/σg = 3, σup = σdown = 0.2×σg, andS = 0. (b): Dips rather than
peaks ateVT = ±Ei occur whenσex < σg. Here it is simulated withA = 1.1,B = −0.25,
andΓ = 0.35 [arb. units], calculated forσg/σex = 3, σup = σdown = 0.2×σex, andS = 0.

adjustable average time between two tunneling electrons ofτ ≈ 2 fs − 10 ns. While the
conductancesσ scale linearly with the tunneling currentIT , the spontaneous relaxation rate
S is constant and thus discoverable by performing IETS measurements in a wide current
range.

2.3.4 Spectroscopic maps

Up to now we have discussed the possibility of measuring the LDOS on single points. These
methods use the high resolution of the STM to obtain locally aρ(eVT ) curve, i. e. the energy
dependent LDOS.

Sometimes it is more useful to map the LDOS of a specific area ata certain energy.
This is done by using the constant-current imaging mode (section 2.2) while modulating
the applied voltageVT and detecting thedI/dV signal continuously to create a map of the
LDOS at the energyeVT .

The main problem for analyzingdI/dV maps arises from the fact that we can no longer
assume that the tip-sample distance stays constant. Duringthe scan not only does the ge-
ometric surface topography change the tip height, but also variations in the LDOS integral
∫ eVT

0 ρ(ǫ)dǫ influences the tip height as explained in section 2.2. To minimize these in-
fluences, the tip-sample distance can be taken into account to correct thedI/dV map by
[45]:

∆

(
dI

dV

)

≈ −2κ

(
dI

dV

)

0

∆z, (2.34)

with (dI/dV )0 as averagedI/dV signal,∆(dI/dV ) and∆z as the change in thedI/dV
and thez-signal, respectively, andκ(z), as in equation 2.1 on page 4, with the estimated
average tip-heightz.
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2.3.5 Beyond the limit of resolution

As we have discussed in detail in this section, STS offers a fascinating potential to obtain
detailed spectroscopic information of the probed system. Unfortunately, the resolution is
limited due to broadening effects. While in most cases the influence of electronic noise
sources and the modulation voltage (section 2.3.1) to this broadening can be acceptably
reduced by carefully designing the experiment and equipment, the influence of the finite
temperature (section 2.3.2) is only reducible to a certain degree and therefore often the
limiting factor of the approachable maximum resolution.

It might be useful to imagine for a moment a situation in whichwe are able to design
the LDOS for a “perfect” tip. For spectroscopic measurements, a tip with flat LDOS over
the energy range of interest might not be the best choice because of the broadening of the
occupation of electronic states aroundEF , which is a direct consequence of the fermionic
nature of electrons and described by the Fermi-Dirac distribution. An imaginary tip with
only a sharp peak in the LDOS atEF would not be limited in resolution by the finite
temperature as seen by calculating∂IT /∂V with equation 2.9. With such a tip the first and
third sum vanish. Integration of the second part yieldsρs(eVT ):

∂IT
∂V

∣
∣
∣
∣
VT

∝
∞∫

−∞

dǫ
[

−ρs(ǫ)δ
′(ǫ− eVT )ft(ǫ− eVT )

︸ ︷︷ ︸

=0

(2.35)

−ρs(ǫ)δ(ǫ − eVT )f ′t(ǫ− eVT )

+ ρs(ǫ)δ
′(ǫ− eVT )ft(ǫ− eVT )fs(ǫ)

︸ ︷︷ ︸

=0

]

= ρs(eVT ).

Unfortunately, such a tip does not exist. But as it will be shown in chapter 5.3, supercon-
ducting tips with their sharp increase in the quasi-particle excitation spectra ateVT = ±∆
and their gap betweenEF ±∆ can be successfully used to significantly increase the resolu-
tion in STS measurements. With these tips it is indeed possible to obtain resolutions below
3.2kBT (elastic tunneling) or5.4kBT (inelastic tunneling) even if one has to perform a
deconvolution of the sample spectrum from the quasi-particle excitation spectrum of the
superconducting tip.
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Chapter 3

Creating a superlattice of Ce
adatoms on Ag(111)

3.1 Introduction

The control of the geometric, electronic, and magnetic properties of ordered structures at the
nanoscale is necessary for the understanding and fabrication of new materials and devices
with structures as small as single atoms or molecules. In principle, there are two routes that
lead to the construction of nano objects: (i) the “top-down”approach which is the extention
of current methods of microelectronic production. In the (ii) “bottom-up” approach single
atoms or molecules are manipulated using the STM to create complex structures [46, 47,
48, 49, 50], or, alternatively, atomic or molecular patterns are formed by self-assembly
[51, 52, 53, 54].

In this chapter, the creation of a hexagonal superlattice ofsingle Ce adatoms on the
Ag(111) surface will be discussed. As proposed more than 25 years ago [55], long-range
surface-state-mediated adatom interactions, which have been found on different metal sur-
faces [56, 57, 58, 59], can be the driving force to create sucha superlattice when the adatom
concentration, the sample temperature, and the adatom diffusing barrier are in a subtle bal-
ance [60, 61, 62].

Furthermore, the influence of such an artificially produced adatom superlattice on the
surface state electrons will be discussed. A simple, intuitive model based on a periodical
two-dimensional lattice and additionally performed tight-binding simulations will reveal
site-dependent characteristic features in the LDOS which we compare with spectroscopic
measurements showing good agreements between model and data [63].

The opening of an energy gap in the surface state band will be crucial for the under-
standing of the lattice stability and is reminiscent of the gap opening in systems with charge-
density waves [64] or of metal-insulatorMott-transitions [65, 66]. Due to the high lateral
resolution of STM, the local distribution of the electrons in the bonding and antibonding
bands of the split surface state was measured [63]. Remarkably, the model based on surface
state mediated adatom interaction, as well as the band calculations obtained with the tight-
binding approach, resulted for the lowest energy configuration in the same adatom-adatom
distance as experimentally observed. These reveal the fascinating duality in nature, where
physical problems in the nanoworld can be solved using an approach in real space (as in the
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Figure 3.1: The clean Ag(111) surface observed with STM at a base temperature ofT =
50 K with a tunneling voltage ofVT = −20 mV and a setpoint currentIT = 1 nA. The size
of the image is approximately9.5 × 7 nm2.

first), or in reciprocal space (as in the latter).
Additionally, the influence of imperfections and disorder on the LDOS was measured

and rationalized within the tight-binding model [63]. These results are of considerable in-
terest, as disorder is expected to lead toAndersonlocalization in 2D [67, 68] with dramatic
consequences on several properties, including the conductivity and the LDOS of the elec-
trons in the sample.

3.1.1 The surface state of Ag(111)

Silver has a face-centered-cubic (fcc) crystal structure with a unit cell side-length of 409 pm
[69]. The hexagonal closed-packed (111) surface reveals six-fold symmetry with an inter-
atomic distance of409 pm/

√
2 = 289 pm, which can be made visible with STM as shown

in figure 3.1.
The Ag(111) surface has aShockley-like surface state [70, 71] which appears at the

Γ-point of the projected band structure and has a band edge below the Fermi energy at
−63 meV [26]. The surface state exists due to the fact that the periodicity of the crystal
potential is interrupted at a surface. Normally “forbidden” electron wave-functions with an
imaginaryk-vector inside the crystal have on some surfaces a nonvanishing real part [72].
The amplitude of the surface states wave-function decreases exponentially in the crystal as
well as in the vacuum. Nevertheless, on the Ag(111) surface the surface state electrons
form a nearly free two-dimensional (2D) electron gas with aneffective electron mass of
m∗ = 0.42m0 (m0: free electron mass) [73] and an almost parabolic energy momentum
relation for low energies (E . 250 meV) as discussed in the following. Thus, it can be
described by the expression

E(~k) =
~

2~k2

2m∗ − E0, (3.1)
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Figure 3.2: (a): Schematic representation of the projectedband structure of the Ag(111)
surface around theΓ point (~k = ~0) plotted in direction of the M and K point. The parabolic
curve describes the dispersion of the surface state. (b): For a 2D free-electron gas, the
momentum~k has two components and all~k with the same energy lie on a circle. The
difference between two circles of constant energy is the gray hatched ring.

which is schematically represented in figure 3.2 (a). The density of states (DOS)n(E),
i. e. the number of states in an energy interval(E,E + dE), is thereby given as [72]:

n(E)dE =
1

(2π)m

(
∫

~k(E)

dfE

|grad~k
E(~k)|

)

dE, m = dimension= 2 in this case, (3.2)

with fE as the constant energy surface in~k-space andgrad~k
E(~k) as the gradient ofE(~k)

with respect to~k.
For the free 2D electron gas, equation 3.2 can be understood with the help of figure

3.2 (b). All possible electron states with energyE are located on a circle in thekx, ky

momentum space with constant absolute momentum valuek =
√

k2
x + k2

y . Changingk

to k + dk leads ton(k)dk = 2πkdk new states (gray area). With the substitutiondk =
m∗(~2k)−1dE obtained from the differentiation of equation 3.1, one can calculate the DOS
of the 2D electron gas as an energy independent constant of:

E > E0 : n(E)dE =
m∗

2π~2
dE; E < E0 : n(E)dE = 0. (3.3)

As seen in chapter 2.3, scanning tunneling spectroscopy measures the LDOS of the
sample. On clean Ag(111) terraces, a step-like increase in the differential conductance at
E0 = −63 meV can be observed which is due to the opening of new tunneling states of the
surface state DOS, as shown in figure 3.3.

Additionally, mapping the LDOS (see chapter 2.3.4) at different tunneling voltages
eVT > E0 close to surface steps or impurities allows the direct measurement of the en-
ergy momentum relation of equation 3.1 [74]. The electron waves are reflected at steps and
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Figure 3.3: The surface state observed with STS on a clean Ag(111) terrace at a temperature
of T = 5 K. Clearly visible is the step-like increase in the LDOS at energies above the
surface-state onset at≈ −63 meV.VT = −100 mV, IT = 1 nA, andVm = 5 mV.

impurities producing an oscillating interference pattern(Fig. 3.4). Since these interference
patterns are oscillations in|ψ(~r)|2 with ψ(~r) as the surface state electron eigenfunction, the
spatial frequency of the pattern is given by2k(E) with k(E) as the inverse of the dispersion
E(k) of equation 3.1. This method has been successfully applied to measure the dispersion
relation of the surface state of different metal surfaces [75, 76, 73].

3.1.2 Electron density oscillations

As shown in figure 3.4, impurities and adsorbates on the Ag(111) surface act as scatterers
for the electron waves. They break the symmetry of a clean surface by inducing an addi-
tional local potential to the periodic potential of the surface atoms. The electrons around
this perturbation attempt to screen the potential by density oscillations, so calledFriedel-
oscillationsafter J. Friedel who first described these oscillations theoretically [77]. The
wave length of this oscillation at the Fermi energyEF is thereby determined by half of the
wave lengthλF = 2π/kF of the screening electrons.

In silver, theThomas-Fermiwave vector for bulk electrons (kTF = 12 nm−1) [78] is
relatively large compared to that of the (111) surface stateelectrons ofkF =

√
2m∗E0/~ =

0.82 nm−1. The shorter wave vector of the surface state electrons produces about a 15-times
larger oscillation wavelength, which makes the observation in STM much easier. Addition-
ally, the screening amplitude decays in the bulk withr−2, while it decays on the surface for
surface state electrons only withr−1 due to the dimensional restriction in two dimension.

A single Ce atom observed on a clean Ag(111) surface reveals this Friedel-like oscilla-
tory modulation of the surface state electron density, as shown in figure 3.5 (a). The pseudo
3D representation results from a constant current STM imagewhich was measured at a base
temperature ofT = 3.9 K to ensure that the Ce adatom is immobile during the measure-
ment. It shows concentric rings of increased tip-height around the atom in the center of the
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Figure 3.4: dI/dV maps of Ag(111) at (a):VT = −50 mV, (b): VT = −25 mV, (c):
VT = +10 mV. Oscillations perpendicular to the step edge, which run vertically through
the middle of the images and circular around impurities, form a standing wave pattern with
an energy dependent wave length. The size of the image is40 × 40 nm2 recorded with a
base temperature ofT = 50 K, a setpoint current ofIT = 0.5 nA, and a voltage modulation
of Vm = 5 mV.

Figure 3.5: (a): Friedel oscillation of a single Ce adatom ona clean Ag(111) surface ob-
served at a base temperature ofT = 3.9 K, a tunneling voltage ofVT = −3 mV, and a
setpoint currentIT = 20 pA. Image size:25 × 25 nm2. (b): Simulation using equation 3.4
with a scattering phase shift ofθ0 = 0.37π and a wave vector atEF of k = 0.82 nm−1.



26 Creating a superlattice of Ce adatoms on Ag(111)

image. The tunneling voltageVT was set to−3 mV, very close toEF , so that only the small
interval betweenEF − 3 mV andEF of the LDOS contributes to the tunneling current (see
equation 2.7 and chapter 2.2) and thus, the topographic image reflects mainly the LDOS at
EF . A first maximum exists at a radius of≈ 3.2 nm, while the following rings are at a
distance of≈ λF /2 = 3.8 nm from each other, withλF as the in-surface Fermi-wavelength
λF = 2π/kF . The deviations from a perfect circular shape are due to interferences with
reflections from other adatoms located further away and therefore not seen in the figure.

For the LDOS atEF , the variation can be described as the sum of the amplitude ofan
incoming and a reflected electron wave [75]:

∆ρ(r) ∝ 1

kF r

(

cos2
(

kF r −
π

4
+ θ0

)

− cos2
(

kF r −
π

4

))

. (3.4)

The Fermi-level phase shiftθ0 of the reflected wave is thereby due to the interaction with
the adsorbate. Simulating equation 3.4 and comparing it with the measured pattern results
in a phase shift for Ce on Ag(111) ofθ0 = (0.37 ± 0.05)π, as shown in figure 3.5 (b). The
simulation is in good agreement with figure 3.5 (a) except forthe shape of the atom in the
center of the image which is not included in the simulation.

3.2 An adsorbate superstructure

Dosing approximately 0.2% of a monatomic layer (ML)1 of Ce adatoms from a thoroughly
degassed tungsten filament onto a well-prepared Ag(111) surface leads to a non-random
distribution of Ce adatoms. Figure 3.6 shows an image taken at a temperature of 3.9 K by
pumping on the bath of the He cryostat [79]. The tunneling voltageVT = −100 mV and
current setpointIT = −20 pA lead to a high tunneling resistance to prevent influences of
the cut Pt-Ir tip on the adatoms. The adatoms form rows and small islands with a typical
adatom-adatom separation of3.2 ± 0.05 nm.

After having increased the sample temperature to 4.7 K the Ceadatoms look “fuzzy”
due to the jumps of the adatoms to adjacent lattice positionson the underlying Ag(111)
lattice seen in figure 3.7. The few stable objects which remain immobile in the image
were identified as dimers which have been formed after Ce evaporation on the sample at a
temperature of about 8 K. Even at the low setpoint current (IT = 20 pA), some of the Ce
adatoms show tip-induced motions. The atoms move in the direction of the scan as seen in
multiple imaging of the same atom in several subsequent scanlines.

The observed adatom-adatom distance of3.2 nm matches the first maximum in real
space of the electron density oscillation atEF around a single Ce adatom, as discussed in
section 3.1.2. WhileJ. Friedelalready suggested an interaction between embedded atoms
in a crystal due to electron density oscillations [77],K. H. Lau andW. Kohnshowed that
for interactions between adsorbates on a surface with a partly filled surface state band the
interaction energy decays only with1/r2 instead of1/r5 as for interactions mediated by
bulk states [55]. The explicit theoretical analysis based on theHarris functional expression
[80] was performed byP. HyldgaardandM. Persson[81] in particular to be easily applicable

1In the context described here, a monatomic layer of Ce means the complete coverage of the Ag(111) surface
with Ce atoms having the same spacing as in their crystal lattice. (≈ 4 × 1014cm−2)
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Figure 3.6: STM constant-current image of the Ag(111) surface covered by approximately
0.2% of a ML of Ce obtained at a temperature of 3.9 K (image-size 100 × 80 nm2, VT =
−100 mV, IT = 20 pA). The Ce adatoms have a preferred next-neighbor distanceof 3.2 nm.

Figure 3.7: STM constant-current image as in figure 3.6 but ata temperature of 4.7 K. The
Ce adatoms are mobile and appear “fuzzy” while some dimers which have been formed are
immobile.
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Figure 3.8: Calculated interaction energy between two Ce adatoms on Ag(111) forθ0 =
0.37π. Depending on the reflectivityR the trapping barrier for an adatom-adatom distance
of 3.2 nm is between1.2 − 4.2 meV.

to STM measurements. Their results lead to the following surface state mediated interaction
energy between two adatoms which is in good agreement withab initio calculations [82]:

∆Epair(r) ≃ −E0

(
(R − 1)2

4
+R sin2(δ′0)

)

×
(

2

π

)2 sin(2kF r + 2θ0)

(kF r)2
. (3.5)

The interaction energy depends on the distancer between the adsorbates, the reflectivityR,
the surface state band edge onset energyE0 with respect toEF , and the associated surface
Fermi wavevectorkF . Scattering into bulk states is taken into account by a complex phase
shift: δ0 = δ′0 + iδ′′0 . With this definition, the reflectivity is written asR = exp[−2δ′′0 ] and
the Friedel-like phase shift atEF for an isolated adsorbate can be written [81]:

θ0 = tan−1

(
1 −R cos(2δ′0)

Rδ′0

)

. (3.6)

Using the observed phase shiftθ0 = (0.37 ± 0.05)π (see section 3.1.2 and figure 3.5),
equation 3.5 has its first minimum atr = 3.2 ± 0.2 nm and a weak local maximum at
r = 5.2 ± 0.2 nm (Figure 3.8). The amplitude of the interaction energy depends therefore
on the reflectivityR which can only be between0.40 and1.0 due to the restrictions implied
by equation 3.6. ForR = 1 the Ce adatoms act as perfect scatterers, i. e. no surface state
electron waves are scattered into bulk states, and the trapping barrier for an adjacent adatom
at the position of minimal energy (r = 3.2 nm) is about4.2 meV, while forR = 0.4 the
trapping barrier decreases to about1.2 meV. To conclude, the deposited Ce must have suffi-
cient thermal energy to overcome the small potential barrier at an adatom-adatom distance
of r = 5.2 nm by random diffusion, but get trapped afterwards at the energetically preferred
distance ofr = 3.2 nm, as observed in figure 3.6.
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Figure 3.9: Left: Constant-current STM image (108 × 108 nm2, VT = −90 mV, IT =
40 pA) of the Ag(111) surface covered by approximately0.01 ML of Ce at a base tempera-
ture of 3.9 K. Right: Fourier transformation of the image.

Increasing at low temperature (T = 3.9 K) the coverage to about 1% of a ML of Ce
adatoms leads to an ordered hexagonal arrangement as shown in figure 3.9 (left). The Ce
adatoms are clearly visible as bright spots forming a hexagonal superlattice with a distance
between two neighboring adatoms of3.2±0.2 nm which is manifested in the Fourier trans-
formation (3.9 (right)) as a ring-like structure at the corresponding space-frequencies. As a
consequence of the only short range angular correlation in the superlattice [83] only broad
peaks are detected at the six symmetry points in contrast to aperfectly oriented hexagonal
lattice.2 This self-organized superlattice covers the entire Ag(111) surface up to macro-
scopic distances, i. e. taking images at different regions of the sample by displacing the tip
in the millimeter range leads to the same superstructure. Such a long-range ordered su-
perlattice has not been observed before, even if attempts were made with Cu on Cu(111)
[57, 58] and Co on Ag(111) [84].

To estimate the interaction between the Ce adatoms in the lattice, we may calculate
the interaction energy for an adatom located at~r surrounded by six neighbors at~ri (i =
1 . . . 6) in hexagonal arrangement with an adatom-adatom distance of 3.2 nm. Using the
pair interaction energy and an additional term for the interactions between three adsorbates
[85] result in an interaction energy for the central atom of:

∆Eint(~r) ≃
6∑

i=1

∆Epair(|~ri − ~r|) +

6∑

i=1

6∑

j>i

∆Etriple(~ri, ~rj , ~r) (3.7)

2Higher ordered regions which show more pronounced peaks in the Fourier transformations were also found
as can be seen in [60].
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with ∆Epair as defined in equation 3.5, and

∆Etriple(~ri, ~rj , ~r) ≃ −E0

(
(R− 1)2

4
+R sin2(δ

′

0)

)3/2
(

16
√

2

π5/2

)

γ123 ×

sin(2kF r123 + 3θ0 − 3π/4)

(kF r123)5/2
(3.8)

with the definition ofθ0 as in equation 3.6 and the shorthands

r123 = |~ri − ~rj | + |~ri − ~r| + |~rj − ~r| and γ123 = 2

(

2
r
3/2
123

√

|~ri − ~rj | |~ri − ~r| |~rj − ~r|

)

.

Minimizing the interaction energy∆Eint by varying the adatom-adatom distancedwith
a constant phase shift set toθ0 = (0.37 ± 0.05)π results ind = 3.2 ± 0.2 nm, which is in
excellent agreement with the observed one.3 The corresponding energy map coded in gray
levels (dark: low values, bright: high values) and a cross section is shown in figure 3.10.

Depending on the reflectivityR, the central atom sits in an energetic minimum (~r =
~0) induced by the six next-neighbor Ce adatoms and gains an energy between6.7 meV
(for R = 0.43) and31 meV (for R = 1) with respect to the energy at infinite position
(|~r| → ±∞). The formation of dimers is inhibited by the potential wallat |~r| ≈ 2.3 nm.
Furthermore, figure 3.10 exhibits an almost parabolic energy-position relation for small
variations of~r around the most stable position at~r = ~0.

Using the statistical distribution of the variation of the adatom position between two
successive scan lines at a temperature ofT = 4.8 K, which occurs due to random jumps of
the Ce adatom from one atomic position to another within the well as seen in figure 3.11 (b),
we determine directly the reflectivityR by comparing to the Boltzmann distribution

n(~r) = n0 exp

[

−∆ER
int(~r) − ∆ER

int(~0)

kBT

]

. (3.9)

The result is displayed in figure 3.12 and shows a Gaussian distribution with a full width at
half maximum of0.57±0.02 nm, consistent with the approximately parabolic potentialwell.
A least square fit of equation 3.9 to the data results in a reflectivity of R = 0.43+0.1

−0.0 and
thereby in a superlattice confining potential of11.8 ± 1.2 meV (see fig. 3.10)4. We have
to note that the measured distribution was corrected to the fact that we measure changes
only in one direction. It should be approximately the true adatom distribution as long as
τtip ≪ τjump ≪ τatom , whereτtip ≃ 30 ms is the time to scan over a single adatom,τjump

is the temperature dependent characteristic adatom hopping time from one Ag(111) lattice

3Neglecting triple interactions between the adsorbates would lead to an ideal phase shift for minimal energy
in a lattice with3.2 nm adatom-adatom distance ofθ0 = 0.45π in contradition to the observations, while when
including triple interactions the ideal phase shift becomes 0.36π. Higher order processes, i. e. interactions
between 4 or more atoms have very small influence on the overall energy due to the rapid spacial decay of the
wave-functions and are neglected.

4Surprisingly, the analysis results in the minimal possiblereflectivityR that is allowed according to equation
3.6. Even if not discussed here, the interplay between the phase shiftθ0 and the reflectivityR depends strongly
on the intrinsic binding of the Ce adatom to the Ag(111) surface. Since a high percentage of electrons are
scattered into bulk states the adsorption seems to be dominated by the interaction with the surface state.
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Figure 3.10: Calculated potential landscape and cross-section along the direction~r =
(x
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)

(line) of the pair- and three-adsorbate interaction for a single adatom surrounded by 6 in
hexagonal order fixed adatoms (small black spots in the intensity plot) with an adatom-
adatom distance of 3.2 nm and different reflection coefficientsR. For the reflectivityR =
0.43 the confining potential is given by11.8 meV.

Figure 3.11: Constant-current STM images of the Ag(111) surface covered by approxi-
mately 1% of a ML of Ce obtained at a temperature of (a) 3.9 K and(b) 4.8 K with the same
image-size of35 × 35 nm2 (VT = −100 mV, IT = 20 pA). At 3.9 K the Ce adatoms are
immobile during the time of data acquisition, while they look “fuzzy” due to jumps between
lattice-sites of the underlying Ag(111) surface during thescanning at the slightly elevated
temperature of 4.8 K.
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site to another, andτatom ≃ 16 s is the total time during which a given adatom is monitored
and hopping events can be recognized. The average time between two jumpsτjump =
300 ± 100 ms is estimated from the statistical probability of observing a jump duringτtip
and the probability of observing no jumps during the time of1 s between successive scans
over a given adatom. Non-negligible possible forward-backward jumps due toτjump ≪ 1 s
are thereby included.

Assuming an attempt frequency ofν0 = 1012±0.5 Hz [59] we calculate the diffusion
barrier for the Ce adatom on the Ag(111) lattice toEdiff = kBT ln(ν0 τjump) = 10.9 ±
0.7 meV. Thus, reducing the base temperature toT = 3.9 K “freezes” the superlattice as
seen in figure 3.11 (a) because the adatom hopping timeτjump comes now in the range
of several minutes. Additionally, according to equation 3.9 the variation of the adatom
positions from their ideal positions is smaller, i. e. the superlattice shows a higher degree of
ordering.

To summarize this section, we saw that at low Ce adatom concentration≪ 1% ML the
interaction energy between two Ce adatoms creates only a shallow potential wall of1.2 meV
(see figure 3.8), not enough to trap the adatom atT = 4.8 K and to form an ordered structure
except for small regions with locally higher adatom concentrations as seen in figure 3.7.
But with higher concentration the superlattice is created because adatoms inside an ordered
lattice are trapped in a sufficiently high potential wall of11.8 meV. Additionally, the low
diffusion barrier, which is of the same order of magnitude, allows the adatom to find the
energetically preferred position in the superlattice, while for systems that require higher
temperatures to allow adatom diffusions (as for example Cu/Cu(111) [58] or Co/Ag(111)
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[59]) the long-range surface-state mediated interaction potential is too weak compared to
the diffusion potential to create ordered structures on a larger scale.

Increasing the temperature and thereby increasing exponentially the mobility of the Ce
adatoms results in more and more disorder in the hexagonal arrangement of the adatoms
and finally causes the collapse of the superlattice at temperatures of about10 K [61].

3.3 Modification of the surface state

The creation of the highly ordered adatom superlattice on the Ag(111) surface with its
characteristic two-dimensional surface state is well described in the framework of long-
range adatom-adatom interactions, as explained in detail in the previous section. But this
model does not provide results for the electronic behavior of the surface state in interaction
with the scattering pattern.

Thus, STS measurements were performed on the stable superlattice at a reduced base
temperature of3.3− 3.9 K by pumping on the liquid He bath [79] to prevent movements of
the adatoms during data acquisition. The applied tunnelingvoltageVT was modulated with
a small sinusoidal voltageVm and thedI/dV signal was detected with Lock-In technique
as described in chapter 2.3.1.

Figure 3.13 (a) presents a close-up (7.5 × 7.5 nm2) constant current STM image of the
Ag(111) surface covered with approximately 0.01 ML Ce forming a well ordered hexagonal
superlattice with an adatom-adatom distance ofd = 3.2 nm. ThedI/dV spectrum shown
in figure 3.13 (c) (black curve) was measured in the center of the triangle formed by three
Ce adatoms as marked in figure 3.13 (a). Compared to the spectrum obtained on clean
Ag(111) (blue curve), the spectum has changed dramatically. Instead of a step like increase
in the differential conductance at the surface state band onset of−63 meV (see section
3.1.1), two relatively broad peaks are observed at approximately 85 and 210 meV. Using the
energy of the first peak as the tunneling voltage for spectroscopic mapping of the differential
conductance, the image in figure 3.13 (b) is obtained revealing a maximum in the LDOS in
the center of the triangles, and a minimum centered on the Ce adatoms with a finite spatial
extent.

Additional site-resolved spectroscopic measurements in aslightly larger superlattice at
a Ce adatom concentration of approximately0.7% ML resulting in a superlattice spacing
of d = 3.5 nm were performed, showing structures in the spectra that strongly depend on
the spatial position, as seen in figure 3.14. On the Ce adatoms(curves1 − 3) the spectra
are mainly flat with a broad gaplike structure between approximately−75 and+35 meV.
When moving the tip away from the center of gravity of the adatom, a peak at an energy
of approximately+45 meV arises which has its maximum intensity in the center position
of the triangle formed by three Ce adatoms (curves4 − 6). The position of the peak is
shifted towards lower energies compared to the measurementin thed = 3.2 nm superlattice
(figure 3.13 (c)). Furthermore, at a bridge site position, i.e. in between two adatoms (curves
10−12), the intensity of the observed peak is slightly reduced andshifted to higher energies
(approximately+60 meV).

To get an adequate overview of the spatial location and energy of the peaks in the LDOS,
1024 spectra were measured in a raster of32× 32 points covering completely one hexagon
of the superlattice. Each spectrum therefore contains 24 data points measured at a tunnel-
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Figure 3.13: (a): STM image of a hexagonal unit cell of the superlattice of Ce adatoms
on Ag(111) with an adatom-adatom distance ofd = 3.2 nm (image size:7.5 × 7.5 nm2,
VT = −100 mV, IT = 10 pA). The red star is not an artificial atom, but marks the point
where the spectrum (c) was measured. (b):dI/dV map of the same area atVT = 85 mV,
corresponding to the energyeVT of the first peak of the spectrum shown below. (c):dI/dV -
measurement of the clean Ag(111) surface showing the unperturbed surface state (see sec-
tion 3.1.1) in blue (set point before opening the feedback-loop:VT = −100 mV, IT = 1 nA,
Vm = 5 mV) anddI/dV measurement in the center of the triangle formed by Ce adatoms
in black (average of5 spectra,VT = −109 mV, IT = 10 pA, Vm = 5 mV).

ing voltageVT between−100 and+130 mV. To prevent jumps of Ce adatoms between
adjacent Ag(111) lattice sites during the recording of all spectra in about110 minutes, it
was essential to reduce the base temperature to3.3 K by pumping on the He-bath. All
the data points of the 1024 spectra that correspond to a certain energy were combined
into a color-coded image (color scale: blue-red-yellow corresponding to low-medium-high
dI/dV signal-strength) as presented in figure 3.15. The maps at lowenergies of−100 and
−90 meV reveal a faint higherdI/dV signal on top of the adatoms as in the region between
the adatoms. Between an energy of about−60 and+20 meV the maps show no difference
in thedI/dV signal over the whole recorded area, while at energieseVT ≥ 40 meV a strong
dI/dV signal with a maximum at about60 meV occurs in the region between the adatoms.

The average distanced between two Ce adatoms in the superlattice depends on the
Ce coverage, and was determined experimentally to be in the range ofd = 2.3 nm (for



3.3 Modification of the surface state 35

Figure 3.14: Set ofdI/dV spectra measured in a hexagonal superlattice with an adatom-
adatom distance ofd = 3.5 nm from an on top position (1 − 3) to a center position (4 − 6)
and a bridge site (10−12). For illustration see the inset STM image where the positions are
marked. The spectra are shifted vertically with respect to each other for better visualization.
The set point before opening the feedback loop was for all spectra: VT = −100 mV, IT =
19.5 pA atT = 3.3 K andVm = 10 mV.

≈ 1.6% ML) to d = 3.5 nm (for≈ 0.7% ML). Higher Ce coverages (> 1.6% ML) result
in the formation of clusters [61] with no long-range order, while lower coverages (< 0.7%
ML) lead to the formation of islands of Ce adatom superlattices with the energetically most
favored interatomic distance ofd = 3.2 nm (see figure 3.21(b)) and empty areas in between
(see page 26).

The position of the first peak in the spectra recorded at the center of a triangle formed
by three Ce adatoms depend critically on the adatom-adatom distanced, as shown in figure
3.16 which compares the spectra taken in superlattices withfive different average adatom
distances. For higher Ce concentration, i. e. smallerd, the position of the first peak shifts
to higher energies. Additionally, the peaks are broadened due to the increased disorder in
compressed lattices (d < 3.2 nm). The energy of the peak depends quadratically on the
adatom-adatom distanced, as shown in figure 3.21 and discussed later.

3.3.1 The nearly free electron model

To rationalize the observed spectral features we might apply a simple, in general solid state
physics well known, nearly free electron model (NFE), assuming an undisturbed, infinite 2D
superlattice of regularly arranged Ce adatoms on the Ag(111) surface with a fixed adatom-
adatom distance ofd = 3.2 nm. Additionally, we assume a perfect free-electron-like surface
state with parabolic band dispersion as shown in figure 3.2 and as described in equation 3.1.
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Figure 3.15: Combined images of 1024 (32 × 32) spectra measured in a Ce adatom super-
lattice with an adatom-adatom distance ofd = 3.5 nm at a base temperature ofT = 3.3 K.
Each image corresponds to the map of thedI/dV signal of the 1024 spectra at the marked
tunneling voltageVT coded in color (blue-red-yellow: low-medium-high signal strength).
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Figure 3.16: Set of spectra taken in the center of a triangle formed by 3 Ce adatoms in a
hexagonal superlattice. The adatom-adatom distanced decrease from the top to the bottom
spectrum due to higher Ce coverage and thereby higher superlattice compression. The red
line mark the shift of the first peak in the spectra from approx. 50 meV (d = 3.5 nm) to
approx.200 meV (d = 2.3 nm). The spectra are shifted vertically in respect to each other.
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Figure 3.17: The periodic 2D superlattice is described within the vectors~a0 and~a1 as basis
(left image). Due to the symmetry the eigenfunction of the surface state electrons can be
written in the Fourier transformed reciprocal space (rightimage). The gray area marks the
first 2D Brillouin zone where the pointsΓ, M , andK are found, which fulfill the Bragg
condition.

Under the assumptions of a defect free superlattice, the eigenvectorsψ~k
(~r) of the surface

state electrons are invariant to the translations

ψ~k
(~r) = eiϕ ψ~k

(~r +m~a0 + n~a1) m,n ∈ Z (3.10)

except for the phase factoreiϕ, with the basis vectors of the lattice (see figure 3.17) given
as:

~a0 = d

(
1

0

)

, ~a1 = d

(
1/2√
3/2

)

. (3.11)

Due toBloch’stheorem [86], the eigenvectors of the surface state electrons can be described
with 2D Bloch waves [72, 64]:

ψ~k
(~r) =

∑

m,n

c~k−~gmn
exp

[

i(~k − ~gmn) · ~r
]

. (3.12)

The eigenvectorψ~k
(~r) depends on the 2D in-plane vector~r and on the momentum vector

~k parallel to the surface. The~gmn represent the Bloch-vectors of the hexagonal pattern
weighted with prefactors (c~k−~gmn

) in the sum of plane waves in equation 3.12. The Bloch
vectors are written as

~gmn =
(

m~b0 + n~b1

)

m,n ∈ Z, (3.13)

with the reciprocal basis vectors given by

~b0 =
2π

d

(
0

2/
√

3

)

and ~b1 =
2π

d

(
1

−1/
√

3

)

(3.14)

to fullfill the condition~ai ·~bi = 0 and~ai ·~bj = 2π ∧ i 6= j. Figure 3.17 displays the two
basis vectors (blue) and the construction of the first 2D Brillouin zone (gray area) with the
characteristic points atΓ,M , andK.
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Figure 3.18: Bandstructure of the 2D electron gas in the empty lattice (black) and in the
nearly free electron approximation (green). Circles mark degeneracies at high symmetry
points where different bands, labeled with their corresponding band indices, have the same
energy at identical wave numbers in the reduced band scheme.In the NFE model these
degeneracies are removed, and close to the high symmetry points the bands are localized in
real space (inset figures).

Figure 3.18 shows the folded band structure of the Ag(111) surface states along direc-
tions of high symmetry (black lines in figure 3.17 (right)). Different bands are labeled with
their indices enclosed in brackets[mn] having the following energy momentum relation:

E(~k) =
~

2

2m∗

(

~k + ~gmn

)2
− E0, (3.15)

where an effective electron mass ofm∗ = 0.42m0 [73], and a surface state onset energy
of E0 = −63 meV [26] was used. For a superlattice spacing ofd = 3.2 nm, theM

point is localized at
∣
∣
∣~kM

∣
∣
∣ = 2π/

√
3d = 1.13 nm−1 and theK point at

∣
∣
∣~kK

∣
∣
∣ = 4π/3d =

1.31 nm−1. For the unperturbed electron gas this corresponds to a lowest energy ofEM =
58 meV andEK = 98 meV. At these high symmetry points of the Brillouin zone theBragg
condition is fulfilled and the dispersion relation is degenerate. At theM point the[00] and
[10] bands intermix, while at theK point three bands[00], [01], and[10] cross.

The degeneracies at theK andM points are removed by including a finite periodic
potential created by the Ce adatoms that affect the surface state electrons. This potential
V (~r) can be developed in the basis of the reciprocal lattice vectors

V (~r) =
∑

vmn exp [i~gmn · ~r] (3.16)
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with vmn as the Fourier coefficients. Since the potentialV (~r) has to be real, and the six-
fold symmetry of the superlattice implies a sixfold symmetry of the potentials5, the first
coefficients have to be equal:

v10 = v01 = v11 = v10 = v01 = v11 ≡ v (3.17)

According to the perturbation theory for degenerate states[88], the eigenfunctions can be
written as a weighted sum of the corresponding intermixing wave functions at the high
symmetry points:

ψ~k
(~r) =

∑

i

αiψ~ki
(~r) (3.18)

It is known that the periodic potential removes the degeneracy leading to the opening of
a gap in such a way that at theM point, where the[00] and [10] wave functions mix, the
energy shift of the bands is6:

∆E1(M) = −v |ψ1〉M =
1√
2

(|ψ00〉 + |ψ10〉) (3.19)

∆E2(M) = +v |ψ2〉M =
1√
2

(|ψ00〉 − |ψ10〉) (3.20)

with |ψ1〉 and|ψ2〉 as the corresponding eigenvectors of the bonding and antibonding state.
At theK point where three wave functions interact with the periodicpotential, one has to
solve the following matrix system [64]:






E(~k) v10 v01
v10 E(~k) v11
v01 v11 E(~k)










α1

α2

α3



 = 0, (3.21)

which results, under the assumption of equation 3.17 and after a short calculation in the
following energy shifts and eigenvectors:

∆E1(K) = +v |ψ1〉K =
1√
2
(|ψ10〉 − |ψ01〉) (3.22)

∆E2(K) = +v |ψ2〉K =
1√
6
(−2|ψ00〉 + |ψ10〉 + |ψ01〉) (3.23)

∆E3(K) = −2v |ψ3〉K =
1√
3
(|ψ00〉 + |ψ10〉 + |ψ01〉). (3.24)

The green curves in figure 3.18 show the results of the NFE model assuming a weak po-
tential with fixed first Fourier componentsv ≈ 30 meV. The degeneracy at theM point is
removed and a symmetric gap of2v width is opened, while at theK point the degeneracy
is not completely removed. The[00] band is shifted toward lower energies by∆E = −2v,

5The symmetry of the potential of the superlattice isnot obviously sixfold. If the magnetic moment of the
Ce-adatoms is taken into account, the system has an additional degree of freedom, and a 180˚or a coplanar
120̊ symmetry (a so calledNéel-structure) are possible solutions [87]. Nevertheless, inthe following we will
neglect these possibilities.

6To minimize confusion, all potentials are assumed to be positive, unless noted.
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while the two remaining bands are shifted together toward higher energy by∆E = v re-
sulting in a gap width of3v.7

The Brillouin-zone of the superlattice is very small compared to the bulk. With a maxi-
mum of the absolute value of the momentum vector|~k| of only 1.31 nm−1, the wavelength
of the eigenfunctions is relatively large (λ = 2π/|~k|) and thus the local distribution is ac-
cessible with STM. The probability of finding an electron with a momentum~k at the real
space coordinate~r is the absolute square|ψ~k

(~r)|2 of the eigenfunction.
Using the results 3.20, 3.19, and 3.22–3.24 together with the definition of the Bloch-

waves: |ψmn〉 = exp
[

i(~k + ~gmn) · ~r
]

(see equation 3.12) and the representation of the

cosine function,cos(x) = 1
2

(
eix + e−ix

)
, the transformation in real space is simply calcu-

lated to

|ψup|2 ∝ 1 + cos(~g10 · ~r)
|ψdown|2 ∝ 1 − cos(~g10 · ~r) (3.25)

with |ψup|2 as the probability density for the up-shifted (anti-bonding) bands (3.20, 3.22,
3.23) and|ψdown|2 as the probability density for the down-shifted (bonding) bands (3.19,
3.24).

Because of the sixfold symmetry of the system, we have to takeinto account the first
three reciprocal basis vectorsb0, b1, andb2 = b0 − b1 to expand equation 3.25 to the entire
2D space:

|ψup(~r)|2 ∝ 3 +
2∑

n=0

cos(~bn · ~r)

|ψdown(~r)|2 ∝ 3 −
2∑

n=0

cos(~bn · ~r). (3.26)

The insets in figure 3.18 show the result. States in the lower bands are concentrated close to
the Ce adatoms to take advantage of the attractive potentialhere, while states in the upper
band are concentrated at positions between the Ce adatoms. Additionally, the bands are
flattened around the high symmetry points leading to an increase in the DOS (see equation
3.2 on page 23). Thus, the NFE model is able to explain accurately the observed peak at
about85 meV (Fig. 3.13 (c)) which agrees roughly with the energetic position of the flat
bands. Additionally, the location of the peak between the adatom arrangement, as seen in
figures 3.13 (b) and 3.15), is well understood by the spacial distribution of |ψup(~r)|.

Nevertheless, the presented NFE model has several disadvantages as summarized in the
following points:

1. The result of the model suggests a high density of states ontop of the Ce adatoms at
an energy of about45 meV created by theψdown solution which is not observed.

7The still remaining degeneration would be removed by assuming a potential with lower symmetry (i. e.
including the spin-freedom (see footnote 5). For a potential with threefold (120̊ ) symmetry, equation 3.17 can
be replaced withv10 = iv, v01 = −iv andv11 = iv. Then, the bandshift energies are∆E1,2 = ±

√
3v and

∆E3 = 0, so that all bandcrossings are removed [64].
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2. While we have used only the first Fourier coefficients of thepotentialV (~r) induced
by the superlattice, the coverage of the potential is ratherlong-range (≈ d/2) in
contradiction to supposed interactions of the Ce adatoms with only the nearest silver
atoms of the supporting surface.

3. The first order interaction energyv ≈ 30 meV is not related to any physical property
of the adsorption process between Ce and the Ag(111) surface. It is rather a free
guess.

4. The NFE model crucially depends on the exact periodicity of the superlattice. Imper-
fections cannot easily be included.

3.3.2 Tight-binding simulation

To overcome the limitations of the NFE model and to get a deeper understanding of the
physics in the superlattice creation, stabilization, and in particular the changes of the LDOS
of the surface state, we performed tight-binding (TB) simulations in cooperation withCé-
dric Weber8, Frédéric Mila9, andThierry Giamarchi10.

Compared toab initio calculations, which are highly accurate but unfortunatelyat the
same time highly computationally demanding and thereby even with today’s available com-
puter power still limited to systems well below 100 atoms [89], TB calculations are two or
three orders of magnitude faster [90] and therefore applicable even for large systems. The
TB simulations promise to be more accurate than heuristic methods (e. g. the NFE model),
because the quantum mechanical nature of bonding between atoms is preserved in the cal-
culation.

The TB method can be characterized by the following: The model approximates the ex-
act eigenstates of the many-body Hamiltonian with a set of effectively one-particle Hamilto-
nians in an atomic orbital-like basis set and it replaces theexact Hamiltonian operator with
parameterized Hamilton matrix elements [90]. In general, only a small number of tabulated
[91] basis functions|ψ〉 are used, corresponding to the atomic orbitals in the energyrange
of interest. For the Ag(111) surface state which originatesfrom the outer5s1 electron of
silver with its electronic structure of [Kr]4d15s1 only this orbital will be taken into account.
The eigenstates|ψα〉 of the system are then obtained by solving the stationarySchrödinger
equation,

Ĥ |ψα〉 = Eα |ψα〉 . (3.27)

For our system of metallic Ag the eigenstates can be written in a very localized base
[92]:

〈ψ(~r)|ψi(~ri)〉 ∝ e−|~r−~ri|, (3.28)

with ~ri as the position and|ψi〉 as the5s1 electron eigenstate of theith Ag atom. The
experimental findings can then be rationalized with the following TB Hamiltonian:

Ĥ = −|t|
∑

<i,j>

|ψi〉 〈ψj | +
∑

i

Vi |ψi〉 〈ψi| + ǫ0, (3.29)

8Institut de Recherche Romand sur les Matériaux (IRRMA), EPFL
9Institute of Theoretical Physics, EPFL

10DPMC, University of Geneva
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Figure 3.19: (a):l × l unit cell used for the TB calculation. The Ce adatom interacts only
with the three nearest Ag neighbors (dark spheres) (b): Bandstructure of the 2D system for
d = 3.2 nm. Dotted lines: folded dispersion of the unperturbed freeelectron in the empty
lattice approximation; solid lines: TB calculation. (c): TB calculation of the spatial LDOS
at an energy of85 meV.

where the summations<i, j > run over neighboring Ag sites. In the simulations, isotropic
hopping integralst are used due to the spherical symmetry of the5s1 orbital. The effect
of the Ce adatom on the electronic states of Ag is described bythe on-site potentialVi. As
long as this potential decreases fast enough with the distance from the Ce atom, the results
depend very little on the actual form of the potential [92]. For simplicity, we assume that
the Ce adatom stays in the middle of three neighboring Ag sites (hollow site) and that the
effect of the potential induced by the Ce adatom is very local: Vi = U for the three Ag
atoms closest to the Ce adatom in each unit cell, andVi = 0 elsewhere (see figure 3.19 (a)).

The parameters|t| and ǫ0 have been set to|t| = 750 meV andǫ0 = 4.437 eV to
reproduce the onset energyE0 = −63 meV [26] and the effective massm∗ = 0.42m0

[73] of the unperturbed free-electron like surface state ofthe clean Ag(111) surface (see
discussion in section 3.1.1).

A calculation of the phase shift using a TB model for a single impurity on the Ag(111)
surface to reproduce the measured Friedel-like oscillations of the electron density around
the adsorbate atEF (see section 3.1.2) shows that the calculated phase shift isconsistent
with the experimentally observedθ0 = 0.37π for an on-site potential|U | = 1.3 ± 0.2 eV
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in equation 3.29. The first maximum of the LDOS atEF emerges then at a distance of
d = 3.1 ± 0.2 nm [92] in excellent agreement to the measuredd ≈ 3.2 nm (section 3.1.2).
For the calculation, a40×40 cluster of Ag atoms with one Ce adatom in the center and with
periodic boundary conditions was used. Additionally, it was assured that finite-size effects
in the calculation are negligible.

As a reference, we then calculate the band structure and LDOSassuming a periodic
arrangement of the Ce adatoms. We look for the eigenstates asBloch states of the form

∣
∣ψ~k

〉
=
∑

~ri, ~Rm

a(~ri)e
~k·~Rm

∣
∣
∣~Rm, ~ri

〉

, (3.30)

where~Rm is the position of the unit cell containing theith Ag atom, and~ri the position of
the Ag atom inside the cell, which leads to al2× l2 matrix (l: number of Ag atoms between
two Ce adadtoms) to diagonalize for each wave vector~k. The resulting band structure for a
system with an adatom-adatom distance ofd = 3.2 nm, corresponding tol = 11, is plotted
in figure 3.19 (b) with the same reciprocal basis vectors as given in equation 3.14 on page
37.

Compared to the bandstructure of the calculation done in section 3.3.1 using the NFE
model (see figure 3.18) the result is quite different. At the high symmetry pointsK and
M only the lower band is shifted towards lower energies, whilethe upper bands still lie on
the energy of the empty lattice approximation. This asymmetric opening of an energy gap
at the reduced-zone boundaries leads to peaks in the DOS due to band flattening according
to equation 3.2. These peaks are also reflected in LDOS, but with different amplitudes
depending on the site in the unit cell, similar to the resultsobtained with the NFE model.
States in the lower (filled) band are concentrated close to the Ce adatoms, to take advantage
of the attractive potential there, while states in the upper(empty) band are concentrated
at positions between the Ce adatoms (figure 3.19 (c)). In figure 3.20 the LDOS at the
center of a Ce triangle is compared to experiments. The lowest band is between−170 and
−120 meV, but its contribution to the LDOS calculated at that point is very small. Apart
from the tunneling region below−100 mV, the agreement is remarkably good, especially
considering the fact that this is not a fit but a prediction without adjusting the microscopic
parameters of the model.

Using the same parameters in the TB Hamiltonian (equation 3.29), but adjusting the
size l × l of the supercell by taking forl the closest integer tod/a with a = 289 pm
(the distance between two Ag atoms), the shift of the energy of the first peak for different
superlattices is also very well reproduced by our TB calculation (see figure 3.21 (a)). This
shift varies linearly with the inverse areaΩ−1 of the triangle formed by three adsorbates
with an adatom-adatom distanced, so that the first peak is localized at an Energy

E = E0 + (620 ± 10)meV nm2 × 1

Ω
. (3.31)

This behavior can be easily understood within a model of confinement in a 2D box [93]. A
triangle with perfectly reflecting walls would lead to a slope of 6

√
3π2~2

m∗ = 726 meV × nm2

11, while it is reduced in the Ce superlattices due to the the phase shift during the scattering
process of the electron waves at the adatoms.

11The value can easily be obtained by assuming nodes in the wavefunction on the border of the triangle as
boundary condition.
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Figure 3.20: TB calculation of the LDOS anddI/dV measurement in the center of the
triangle formed by Ce adatoms with an adatom spacing ofd = 3.2 nm. The set point for the
measurement before opening the feedback loop wasVT = −109 mV andIT = 5 pA with a
modulation voltage ofVm = 2.5 mV. The calculation, in contrast to the measurement, does
not include the contribution of bulk states to the LDOS.

Additionally, the TB calculation allows us to understand why the superlattice has a
“natural” periodicity ofd = 3.2 nm. Indeed, the gap opening in the free Ag(111) band
structure which is induced by the Ce potential increases thenumber of states belowEF and
decreases their energy. Thus, we calculate the energy of thelowest band,

Eband =

EF∫

−∞

E × n(E)dE (3.32)

for the clean and for the Ce covered surface. The difference between both gives directly the
contribution of the Ag surface state to the gain in energy perCe adatom for each unit cell
sizel × l (see figure 3.21 (b)). We find that the most favorable configuration corresponds
to a Ce-Ce distance of3.2 nm, precisely the distance realized experimentally in mostcases.
The energy gain remains significant for Ce-Ce distances in the ranged = 2.3 − 3.5 nm,
the distances found as a function of Ce adatom concentration. This effect is analogous
to charge-density wave (CDW) formation in correlated systems [94], but the potential that
stabilizes the CDW here is external (the Ce atoms) while it isself-consistently induced by
correlations in a standard CDW. The optimal Ce-Ce distance agrees with that predicted by
Hyldgaard andPersson[81, 85] as it was shown in section 3.2. Note, however, that the
dramatic effects of the superlattice on the surface state (gap openings, LDOS singularities)
cannot be accounted for by the model ofHyldgaardand co-workers.

Finally, we have studied the effect of local disorder with respect to perfect periodic
arrangement of Ce adatoms on the LDOS. To compare with the spectra obtained on different
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Figure 3.21: (a): Energy of the maximum of the first peak in a spectrum measured in the
center of three Ce adatoms as a function of the inverse areaΩ−1 of the triangle formed by the
Ce atoms (circles: measurements; triangles: TB calculation). The increased error-bars in the
experimental data for smaller adatom-adatom distancesd are due to the fact that compressed
lattices (d < 3.2 nm) spread the observed values (see also fig. 3.16). (b): Energy difference
∆E between adsorbate-covered and clean surface per Ce adatom,calculated for each unit-
cell size. The solid line serves as a guide for the eye. The gray area marks the range of the
adatom-adatom distances where complete superlattice formation was found.

positions in a slightly disordered superlattice, as shown in figure 3.22 (a), we reproduced
the local environment around pointsA andB inside a44 × 44 cluster of Ag atoms (figure
3.22 (b)), which was then repeated periodically to minimizefinite-size effects.

To determine the degree of disorder in the local environment, the self-correlation is
calculated as following

h(x, y) =
∑

x′

∑

y′

I(x′, y′) × I(x′ + x, y′ + y), (3.33)

whereI(x, y) denotes the normalizedz-height of the STM image at the position(x, y).
For the results displayed in figure 3.22 (d) we used for the summations a small area (x′ ∈
[x0−7.5 nm, x0+7.5 nm], y′ ∈ [y0−7.5 nm, y0+7.5 nm]) around the points (xA(B)

0 , y
A(B)
0 )

where thedI/dV spectra were taken. Any periodicity in the image will be shown as a
periodic pattern, so that a perfect superlattice with no disorderh(x, y) would repeat the
hexagonal order. As seen in figure 3.22 (d) the ordering around pointA is quite good up to
three lattice distances, while aroundB a displacement of just two lattice distances smears
out the result of the self-correlation function, indicating a much higher degree of disorder
compared to the neighborhood ofA.

The influence of the disorder on thedI/dV spectra is seen in figure 3.22 (c). The
agreement between data and TB calculation is again very good: The broadening and the
shift of the main peaks are correctly reproduced except for asmall shift in energy which
might be due to a small systematic error in the determinationof the exact adatom positions,
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Figure 3.22: (a): STM image of a slightly disordered system (35 nm2), VT = −100 mV,
IT = 10 pA. (b): The local arrangement of Ce adatoms in a mesh of44 × 44 Ag-atoms
around the pointsA andB as used for the TB calculation. (c): Spectra obtained at the
marked pointsA andB which differ by their nearest neighbor distances. The changes in
peak position, intensity, and shape indicate the sensitivity of the electronic structure to local
disorder. Dashed lines: TB calculation. For clarity the curves have been superimposed and
curvesB have been shifted vertically. (d): Self-correlation images of the area aroundA and
B show that the region aroundA has a higher degree of order than the region aroundB.
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Figure 3.23: Spectra measured on Ce adatoms adsorbed on Ag(111). (a), (b): Two repre-
sentative spectra obtained on top of Ce adatoms arranged in ahexagonal superlattice with
an adatom-adatom spacing ofd = 3.2 nm. A mostly symmetrical dip with respect toEF

occurs with a half-width ofΓ ≈ 70 meV. (c) Data taken from reference [95] (see text).
(d): Spectrum taken on top of a dimer in the superlattice withmuch smaller half-width of
Γ = 40 meV. The inset in each graph denotes the base temperatureT , the modulation am-

plitude Vm, and the parameters of the best-fit using theFano equation dI
dV ∝ (q+ǫ′)2

1+ǫ′2
+ c

[96], with ǫ′ := eVT−ǫ0
Γ (full line) (see also chapter 4.1.1 on page 51).

as well as the position of the second peak at point A and its absence at point B. Remarkably,
the shifts of the main peaks agree with equation 3.32 and figure 3.21 (a) ifd denotes the
average distance between the 3 Ce adatoms in the triangular lattice that enclose the point
A andB, respectively. Additionally, the absence of the second peak in B can be assigned
to the higher degree of disorder. As seen in the TB band structure calculation (Figure
3.19 (c)), the second peak at about200 meV is due to the flat band whose origin is in the
second Brillouin zone. While the second closest adatom neighbors inB already show a
sufficient amount of disorder, this band is already smeared out and therefore the formation
of this peak is suppressed.

Directly over Ce adatoms the TB model predicts the onset of the lowest band near
−170 meV and a band edge near−120 meV (figure 3.19 (c)), while thedI/dV spectra
taken on top of the Ce adatoms and displayed in figure 3.23 (a) and (b) show a relatively
wide depression in the LDOS of about40% amplitude symmetrically aroundEF , but not
the expected contribution of the first band. On measurementstaken in the slightly expanded
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lattice withd = 3.5 nm a faint signal can be detected ateVT ≈ −100 mV which might be
due to this band (see figure 3.14 and 3.15). The weakness or absence of contributions of this
band can be understood by recalling that the tip is approximately 200 pm (i. e. the apparent
height of one Ce adatom) further distant from the Ag(111) surface when placed above an
adatom. Thus, the contribution of the disturbed surface state to the tunneling current is
reduced (see chapter 2.3.4).

3.4 Summary and Outlook

In this summary I would like to point out again that the chosensystem of Ce adatoms
on Ag(111) is a highly interesting testbed to check theoretical predictions with real ex-
periments, as shown in the previous sections. However, openquestions still remain and
additional experiments might reveal further insight into fascinating physics.

Due to the surface-state-mediated interactions between the Ce adatoms, a relatively
wide 2D superlattice is created, leaving us the exciting opportunity to measure the distribu-
tion of electronic states directly inside the lattice. We have seen that the density of states
varies depending on the site in the superlattice, and that atEF the LDOS vanishes and in-
stead a gap occurs that is essential for lattice stability. These results are surprising given the
discussion at the beginning of the experimental observations where a scattering model was
introduced (section 3.2) that assumes electrons at the Fermi edge are an important factor for
the interatomic interaction. But as mentioned, when the superlattice is finally created, there
are no surface-state electrons at the Fermi energy that could perform this interaction.

Additionally, the spectra obtained on top of the Ce adatoms lead to questions. As seen
in figure 3.23, the spectra (a) and (b) which were measured in the superlattice are relatively
broad, especially when compared to the spectrum (c) which was published in [95] and as-
signed to aKondoresonance due to spin-flip processes during the scattering of electrons on
the Ce adatom (see chapter 4.1.1). The result in [95] is surprising because the experiments
were performed at a base temperature ofT = 5 K where the motion of single Ce atoms in-
hibits spectroscopic measurements. Thus, these measurements might have been performed
on dimers or small clusters which are stable at5 K and show a smaller width in the spectrum
(figure 3.23 (d)).

Although the electronic structure of the Cerium was not taken into account in this chap-
ter, the interaction between the highly localized4f -state of Ce [97] and bulk or surface
states electrons may not be negligible and could indeed leadto spectral features similar to
the one presented in [95]. This will be discussed in detail inchapter 4.

As already mentioned (see footnote 5 on page 39) the magneticmoment of the4f -
electron leads to an additional degree of freedom which is expected to lead to adatom-
adatom interactions between the magnetic moments, the so called Ruderman-Kittel-Kasuya-
Yosida(RKKY) exchange interaction [98, 99, 100] which has in 2D a periodicity of λF /2
[101, 102, 103] and a1/r2 behavior, similar as the discussed adatom-adatom interaction
induced by electron scattering.

This kind of ordered 2D superlattice with interacting magnetic moments could lead to
interesting features including antiferromagnetic order and superconductivity [104] or to a
so calledKondolattice [105].

The Ce/Ag(111) system might not be the best choice for this kind of investigation be-
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Figure 3.24: STM image of hexagonal ordered Ce adatoms on Cu(111) obtained at a base
temperature of3.3 K (VT = 1 V, IT = 3 pA, 36×22 nm2). The average adatom-adatom dis-
tance isd ≈ 1.5 nm. This is shorter then for Ag(111) due to the shorter Fermi-wavelength,
λF = 2π/kF = 3.0 nm [75], of the surface state. The two bright objects on the left and
right side of the atomic step which runs vertically through the image are unknown adatoms
or small Ce cluster. The fuzzy appearance of the adatoms is due to hoppings between adja-
cent lattice sites of the underlying Cu(111) surface even atlow temperature.

cause of the relatively large adatom-adatom distance and the smaller magnetic interaction
energy. Thus, we have additionally examined the superlattice formation of Ce adatoms on
Cu(111) with its smaller wavelength of the surface-state atthe Fermi energy ofλF = 3.0 nm
[75]. As one would expect from the above-developed models, the adatom spacing in the su-
perlattice is clearly smaller as seen in figure 3.24. We foundan average adatom-adatom
distance ofd ≈ 1.5 nm, compatible with a scattering phase shift ofθ0 ≈ 0.2π. As the STM
image reveals, the degree of order is high compared to the Ce superlattice on Ag(111),
which can be understood by the linearity between the pair interaction energyEpair and the
surface-state onset energyE0 (see equation 3.5), which for Cu(111) lies atE0 ≈ −0.40 eV
[75].

Unfortunately, the mobility of Ce adatoms on Cu(111) is evenhigher than on Ag(111),
so that it was impossible to perform spectroscopic measurements in the superlattice even at
the lowest attainable base temperature of the STM ofT = 3.3 K, but it could be an attractive
system for STM measurements at temperaturesT . 1 K, where the hopping rate should be
sufficiently reduced.

Additionally, other systems, for example Fe/Cu(111) [106]or Mn/Cu(111) [107] may
be good candidates for the detection of spin-polarized surface-state-mediated interactions
between the magnetic moments of the adatoms.
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Chapter 4

Spectroscopy on single Ce atoms

4.1 Introduction

With the unique potential to obtain spectroscopic results on the atomic scale, the STM opens
an avenue to detailed informations about processes and interactions between single atoms
or molecules and the supporting surface.

While the last chapter has discussed the interaction between an ensemble of sufficiently
mobile adatoms which was moderated by the free-electron like surface state and eventally
led to the formation of ordered hexagonal structures and thus allowed to measure the influ-
ence of a superlattice on the surface state, this chapter will discuss spectroscopic measure-
ments performend directly on Ce adatoms.

Effects like vibrational excitations and theKondoscattering generate clearly detectable
structures indI/dV measurements which will be the subject of a detailed analysis. As it
will be shown, the determination of the physical origin of the detected features in the spectra
is not allways obvious.

4.1.1 The Kondo effect

While the electrical resistance of pure metals usually decreases with decreasing temperature
because the resistivity is mainly an effect of electron scattering on lattice vibrations which
are evidently lowered at decreased temperature, it was already discovered in the 1930’ that
in some metals which have some magnetic impurities incorporated, the electrical resistivity
increases below a certain temperature (see figure 1.1). The origin of this effect was long-
time unsolved and only in 1964 theoretically explained byJ. Kondo[6, 108].

He showed that the experimental observations can be sufficiently understood when con-
sidering a model including the scattering from the magneticimpurities which interact with
the spins of the conduction electrons of the host metal (see figure 4.1). This behavior is
nowadays called “the Kondo effect” and only arises when the defects are magnetic, mean-
ing that the total spin of all electrons of the impurity atom is unequal to zero.

A very intuitive model to describe a single magnetic impurity embedded in a nonmag-
netic metallic host was given byP. W. Anderson[109]. The so called “Anderson single
impurity model” neglects all electronic states of the impurity except the unpaired one with
spin

∣
∣1
2

∣
∣. This localized state might be originating from ad or f level of the magnetic impu-

rity assuming that the impurity is a transition metal as for example cobalt (Co) with its odd
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Figure 4.1: Kondo scattering on a single magnetic impurity.(a): At sufficient low tem-

peratures an electron
∣
∣
∣~k ↓

〉

of the host metal can be scattered at the impurity into the new

state
∣
∣
∣~k′ ↑

〉

by spin-exchange with the spin moment of the magnetic atom. While in (a) the

dynamic of the spin-flip process is shown, the snapshot in (b)sketches the effect of this per-
manent flipping. The magnetic moment of the impurity is screened over the characteristic
Kondo screening lengthξK .

number of3d electrons (electronic configuration:[Ar]3d74s2) or a rare earth metal as for
example cerium (Ce) with its single4f electron (electronic configuration:[Xe]4f15d16s2).

In this chapter we are mainly interested in effects arising from interactions between Ce
adatoms and the supporting metallic host. Thus, for the sakeof simplicity, we will describe
the presented model in terms of the magnetic4f electron of the Ce atom.

The singly occupied4f state (4f1) is located below the Fermi energy atǫf and separated
by the Coulomb repulsion energyU from the same4f state occupied with two electrons
with opposite spins (4f2) as sketched in figure 4.3 (a)). Due to the hybridization between
the 4f states and the continuum of electronic states in the metal host, the4f levels are
broadened by∆ = ρ0 |V |2 with ρ0 as the DOS atEF of the supporting metal andV as the
hybridization energy which couples the localized state with the continuum of band states.

Exchange processes can take place which flip the spin of the impurity from the “up” to
the “down” state, or vice versa, as it is schematically shownin figure 4.1 (a), while simul-
taneously a spin-excitation state close to the Fermi energyis created. While classically an
energy of at least−ǫF is necessary to bring the electron from the singly occupied4f1 state
to an empty state in the metal atEF , in the quantum mechanical framework the Heisen-
berg uncertainly principle allows for a very short time of abouth/|ǫf | this excitation [111].
Within this timescale of some attoseconds (10−15 s), another electron has to tunnel from
the occupied Fermi sea back to the impurity. This electron, however, can be in the opposite
spin state as the previous one and thus, change the spin of theimpurity between initial and
final state of this scattering process.

This spin exchange modifies the energy spectrum of the system. Taking many of such
processes together, a new state, the so-called Kondo resonance is generated very close to
the Fermi energy (see figure 4.2). This resonance is clearly amany-body phenomenon –
the many-electrons of the free electron gas are decisive in the interaction with the localized
state of the impurity.

The Kondo resonance has a half-width at half-maximum ofΓ, which can be described
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Figure 4.2: Simulation of the4f spectral functionA0(ω) of a single magnetic impurity of
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U separates the unoccupied4f2 state from the4f1 state. The Kondo resonance occurs at
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by a characteristic temperature, the so-called Kondo temperatureTK ,

TK =
Γ

kB
≈ Γ × 11.6

K

meV
, (4.1)

and is calculated by the parameters of the system to [112]:

Γ = kBTK ≃
√
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U

π
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∣
∣
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∣
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∣
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∣
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∣

)−1
]

. (4.2)

While the Kondo effect and the theoretical explanation are known since a long time and
have been experimentally obtained by high-resolution photoemission electron spectroscopy
[113, 114] and inverse photoemission [115, 116], it was in 1998 when the Kondo effect was
detected on single adatoms with STM [95, 117] and renewed theinterest. While previously
performed measurements always probed an ensemble of impurities due to the limited reso-
lution, STM gave the unique opportunity to detect the Kondo effect in the entirely smallest
conceivable Kondo system: A single magnetic adatom supported on top of a nonmagnetic
metal.

Usually, STS measurements do not detect the peak in the spectral function close toEF

which originates from the Kondo effect, but rather a dip-like structure as it is shown in
figures 4.5 and 4.6 for measurements on single cobalt adatomson Ag(100) and Cu(111).
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Figure 4.3: (a): Schematic drawing of the energy dependent DOS in the experimental situ-
ation of a single Ce adatom on a Ag(100) surface. (b): Electrons from the probing tip can
tunnel directly into empty states of the Ag(100) bulk and conserve their spin state (1) or
indirect via a spin-flip process on the magnetic adatom (2a→2b).

To understand this behavior, we want to consider a situationas outlined in figure 4.3. A
magnetic adatom (Ce) is placed on top of a metal surface (in this example Ag(100)). The
occupied4f1 state is localized belowEF and separated byU from the4f2 state as described
in figure 4.2. Electrons originating from the tip have two possibilities to tunnel into the
sample system. They can tunnel directly into empty bulk states aboveEF of the metal
sample (path 1) or indirectly via the above described spin-flip process into the hybridized
and localized state of the magnetic adatom (path 2). These two different paths are chosen
by the tunneling electrons with the probabilities given by the tunneling matrix elementst1
andt2 for the direct and indirect path, respectively. As a result,the tunneling current as a
coherent quantum effect is determined by the quantum interference between both channels
[118].

It was shown byU. Fano that such an interference process leads to a spectral feature
given by the so-called Fano equation [96]:

ρ(E) ∝ ρ0 +

(

q + E−EK
Γ

)2

1 +
(

E−EK
Γ

)2 , (4.3)

whereEK is the position andΓ is the half-width at half-maximum of the obtained curve.
The lineshape of the curve described by equation 4.3 is determined by the parameterq
which results forq → ∞ in a Lorentzian peak and forq = 0 in a Lorentzian dip. For some
arbitrary values ofq the resulting curves are plotted in figure 4.4.

For the tunneling processes (1) and (2a)+(2b) as sketched infigure 4.3 (b), the form
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Figure 4.4: Set of curves calculated with the Fano equation 4.3 for differentq values.

factorq is given by the ratio between the direct and the indirect tunneling process [118],

q =
t2

2πρ0V t1
. (4.4)

While the4f orbitals are closely localized at the nucleus of the adatom [97], the tun-
neling propabilityt2 for the indirect path is strongly reduced compared to the probability
t1 to tunnel directly into the more extendeds- andp-orbitals of the host metal [19]. Thus,
we expect for measurements on Ce values ofq close to zero. This argument holds, up to a
certain degree, also for the3d states of the transition metals as it is seen, for example, in
dI/dV measurements on single Co adatoms supported on a Ag(100) or Cu(111) surface as
presented in the figures 4.5 and 4.6 with show form factors ofq = 0.6 and0.5, respectively.1

In general, the analysis of a Kondo system in STS measurements is difficult. For exam-
ple, the parameters of the Fano fit for the Co/Ag(100) and Co/Ag(111) system were found
to be different from values available in the literature [59,119, 120]. The main problem
is the impossibility to detect the localized4f or 3d levels directly with STS. Thus one is
restricted to the analysis of the Kondo resonance close toEF . Unfortunately, the resonance
signal has rarely a well formed Fano line-shape and the fit of equation 4.3 to the obtained
data results in different parameter sets depending on the assumed background and energy
window of the data taken into account for the fit (see for example the fitting to the data taken
on Co/Cu(111) in ([119]).

1An exception from normally smallq values was recently obtained in STS measurements performedon
single Mn atoms supported on an ultrathin Al2O3 layer on a NiAl(110) surface [40]. When the coupling
between the magnetic adatom and the metallic host is still strong enough to allow Kondo scattering, but the
oxide layer inhibits sufficiently the direct path, a Kondo peak is obtained.
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Figure 4.5: Kondo resonance detected on a single Co adatom onAg(100) (upper curve) in
comparison to the spectrum of the bare Ag(100) (lower curve). Both curves were measured
with a PtIr tip. The red curve is a Fano fit to the black curve with the best fit parameters of
q = 0.60 ± 0.05, Γ = 8 ± 1 meV, andEK = 3 ± 2 meV . Tunneling parameters before
opening the feed-back loop:VT = −46 mV, IT = 0.5 nA, Vm = 1 mV, T = 4.7 K.
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Figure 4.6: Kondo resonance measured at the IBM lab in California on a single Co adatom
on Cu(111) (black curve) with an Ir tip and the correspondingFano fit (red curve). Tun-
neling parameters before opening the feed-back loop:VT = −20 mV, IT = 0.5 nA,
Vm = 0.28 mV at a base temperature ofT = 1.2 K. The parameters of the fit are given in
the figure.
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In the analysis of the Kondo resonance, one important parameter is the average occu-
pation numbernf for the4f states of the adsorbate on the surface [112, 110]. While the
adatom has an integer number of3d or 4f electrons in the gas phase which is given by the
nuclear charge and the position in the periodic table, the adatom on top of a surface can ex-
change charge leading to a higher average occupation numberin the3d or 4f shell. It was
shown, that the position of the Kondo resonance together with its width fulfill the relation
[112]:

EK = Γ tan
(π

2
(1 − nf )

)

. (4.5)

The average occupation numbernf has the meaning of an extra charge which is trans-
ported from the host metal to the impurity and ranges between0 and1 as long as the4f1

level is below and the4f2 level is above the Fermi energyEF . Furthermore, assuming a
relatively small hybridization energy compared to the level energies, i. e.:

∆ ≪ |ǫf |, ∆ ≪ |ǫf + U |, (4.6)

the average occupation number is calculated by the positionof the4f1 state and the Coulomb
repulsionU [110]:

nf = −ǫf
U

+
1

2
. (4.7)

It was shown that the charge transfer, and thus the Kondo temperature (according to
equations 4.7 and 4.2) can be monitored by STM. The Kondo temperature changes with
the number of available next neighbors from the supporting surface. An adatom has four
next neighbors available for hybridization on (100) surfaces (assuming the adatom sits in
a hollow-site position), while the next neighbor number is reduced to three on top of the
(111) surface [120]. Also the number of ligands, as for example CO, bound to the magnetic
adatom influences the coupling of the local magnetic moment with the metallic surface and
thus the Kondo temperature [121]. Additionally, metal-organic complexes are interesting
objects to study because they permit to change the Kondo temperature of the magnetic atom
in the center of the complex by a controlled removing of external hydrogen atoms [122].

As long as the assumptions in equation 4.6 are fulfilled, the above outlined model is suf-
ficient to describe the Kondo effect for a wide range of different adatom-substrate systems.
This is in contrast to the still ongoing theoretical discussion [123, 124, 125] to explain the
STS spectra on strongly hybridized adatoms as for example Tiand Ni [126, 127]. In these,
and similar systems the full impurity Green’s functionGd,f (ω) [112]

Gd,f (ω) =
Γ/∆

ω −EK + iΓ
, |ω| . TK , T = 0, (4.8)

has to be used together with the termV 2Gd,f (ω) ≡ Tc(ω) which is the T-matrix of the
conduction electrons, as it follows from the Anderson Hamiltonian [110]. The complex line
shape observed in tunneling experiments on Ti/Au(111) and Ti/Ag(100) [126, 127] is then
due to the multiple Kondo resonances arising from the crystal-field split local orbitals of the
transition metal impurity [125, 128] and can be calculated using equation 4.8 in the Dyson
equation

Gd,f (ω) = G0
d,f (ω) +G0

d,f (ω)Tc(ω)G0
d,f (ω). (4.9)

Finally, one has to remark that the dynamical spin-flip between the localized magnetic
adatom and the electrons of the Fermi sea leads to spin-polarized electron waves (spin
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waves) in the supporting metal (see figure 4.1 (b)) [129]. Thecharacteristic length scale, the
so-called Kondo screening lengthξK , in which the impurity spin is antiferromagnetically
screened, is given by [112]:

ξK =
~vF

kBTK
, (4.10)

with vF =
√

2EF
m∗ the Fermi velocity of the electrons in the host. For typical metals as Ag

and Cu withvF ≈ 106 ms−1 [78], and Kondo temperatures which range from10 − 100 K
for adsorbates as for example Co,ξK becomes with100 − 10 nm relatively large. Thus, it
is indeed possible that interactions between well ordered single adatoms, as for example in
superlattices (see chapter 3), lead to the creation of a Kondo lattice in which the spin-flip
between individual adatoms is correlated.

4.2 Ce on Ag(110)

While cerium adatoms form hexagonal superlattices on the Ag(111) and Cu(111) surface
at low temperatures (see chapter 3), we do not expect such an ordered formation on the
Ag(110) surface due to the absence of a surface state. Thus, dosing approximately0.1% of a
monolayer of Ce adatoms from a thoroughly degassed tungstenfilament onto a well-cleaned
Ag(110) surface results indeed in a random distribution of the Ce adatoms. In contrast to
the high mobility of the Ce adatoms on Ag(111) at a base temperature ofT = 4.7 K (see
chapter 3.2), we detect immobile single Ce adatoms at that temperature when adsorbed on
Ag(110). dI/dV spectra taken on top of these Ce adatoms reveal no differencecompared
to spectra taken on the clean Ag(110) surface. In particular, we do not observe a Fano-like
spectral feature close to the Fermi energy which would be a sign of the Kondo effect. The
detection of a Fano dip in STS measurements is limited by the base temperature and the
modulation voltage (chapter 2.3.2) and results for our STM in a lower detection limit of a
Kondo temperature ofTK ≈ 10 K, i. e. a Fano dip with a half-width at half-maximum of
Γ ≈ 1 meV.

Apart from the absence of Kondo scattering, we detect a few objects on the surface (<
1% of the adsorbates) which appear “fuzzy” in the STM image as shown in figure 4.7. The
apparent height of these objects is larger (≈ 220 pm) than the height of single Ce adatoms
(≈ 140 pm) when measured at a tunneling voltage ofVT = −412 mV. Spectroscopic
measurements taken on top of these objects reveal features symmetrically toEF . Figure
4.8 shows a typical spectrum obtained on such an unstable object. The blueI(V ) curve
has clearly detectable voltage regions at about±85 mV where the differential resistance
becomes negative. The numerically calculateddI/dV curve (red dots and line) reveals
additional spectral features. We detect a dip symmetrically aroundEF with a half-width at
half-maximum of≈ 12 meV. At slightly higher absolute tunneling voltage (VT ≈ ±50 mV),
a decrease in the conductivity of about20−35% is seen while the already in theI(V ) curve
visible feature at a voltage ofVT ≈ ±85 mV dominates the spectrum and is identified as
the result of an inelastic tunneling process with saturation (see chapter 2.3.3) which can be
successfully described with equation 2.30 of page 17 (blacklines).

The symmetry, the step like change in conductivity at energies of about12 meV and
50 meV, and the negative differential conductivity ateVT = ±85 meV let us assume that the
detected structures belong to complex vibrational excitations of an unknown co-adsorbate
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Figure 4.7: STM image of Ce adsorbates on Ag(110) observed with a PtIr tip. (VT =
−412 mV, IT = 200 pA, T = 4.7 K, image size4 × 4 nm2). The object in the lower right
area is a typical single Ce adsorbate in contrast to the unstable object in the upper left area
which reveals complex spectral features in STS measurements.

originating from contaminations of the surface during the Ce evaporation process. Even
though the exact chemical structure of this contamination can not be clarified with STM, the
vibrational excitation energies give a hint of the possiblemolecules. The ambiguous noise
(figure 4.7) and the strong negative differential resistance point to a hydrogen contamina-
tion. Recently, it was found that hydrogen on Cu (111) shows awide variety of different
vibrational resonances and two-state noise that leads to unstable tunneling conditions simi-
lar to our observation in figure 4.7 [43]. Furthermore, depending on the supporting substrate
single carbon monoxide (CO) molecules show well known characteristic vibrational reso-
nances at energies close to the energies of the spectroscopic features in ourdI/dV curves
[36, 37, 130, 131]. For instance, in high resolution electron energy-loss spectroscopy on CO
molecules adsorbed on a W(100) surface molecular vibrations have been found at energies
of 45 meV, and70 − 80 meV [132]. But while STS measurements on CO show [36, 133]
the characteristic C–O stretching mode at an energy of about250 meV, we do not detect any
significant signal at this energy.

4.3 Ce on Ag(100)

As shown, the Kondo effect is not detectable in the spectra measured on top of single Ce
adatoms supported on Ag(110), while the same experiment performed on an Ag(100) sur-
face reveals intriguing results.

Figure 4.9 shows two different STM images of single Ce adatoms on Ag(100) measured
at low temperature (T = 4.7 K) and exemplarily chosen from different measurement ses-
sions. In the left image, the sample was measured at a relatively high positive tunneling
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voltage ofVT = 0.5 V with a Ce adatom concentration of about0.007 monolayers (ML).
Two different species of adsorbates are clearly distinguishable. About85% appear as pro-
trusions of about230 ± 10 pm apparent height (reddish yellow dots in the image), whilea
minority of about15% have a reduced apparent height of only95 ± 10 pm (violet dots in
the image). The right image of figure 4.9 was measured on a different sample at a tunneling
voltage ofVT = −90 meV and also shows two species of adsorbates which differ by their
behavior when scanned by the tip. While about60% of the objects on the surface are stable,
about40% are switching between an initial large apparent height to a smaller one detectable
by their “fuzziness” during the horizontal tip scan.

The STM image in figure 4.10 (a) shows a close-up of such an unstable object. Recorded
in constant-current mode (VT = −80 mV, IT = 500 pA) by scanning horizontally line-by-
line from bottom to top, the image reveals several reversible transitions of the object from a
large apparent size to a small one and vice versa. The analysis of this transition shows that
the appearance depends on the applied tunneling voltage between tip and sample. At low
absolute tunneling voltage (|VT | < 60 mV) the bistable adsorbates remain in their initial
large appearance, while they switch to the small appearancewhen applying a voltage above
a certain threshold. Interestingly enough, the bistable adsorbate stays in the small appear-
ance when switched even at reduced absolute tunneling voltage until the tip is sufficiently
(≈ 0.5 − 1 nm) laterally removed from the switching object. Thus,dI/dV spectra can be
obtained from the adsorbate in both states revealing a remarkable change of the measured
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Figure 4.9: Two overview STM images of Ce adsorbates on Ag(100) observed at a base
temperature of4.7 K. Left image:66 × 66 nm2, VT = 0.5 V, IT = 0.5 nA; Right image:
20 × 20 nm2, VT = −90 mV, IT = 51 pA.

dI/dV spectrum.
Figure 4.10 (b) compares thedI/dV spectra obtained on top of the adsorbate of figure

4.10 (a) in its small (red dots) and in its large manifestation (green dots). The spectrum
of the adsorbate in the initial large position is featureless and almost flat in contrast to
the spectrum of the same adsorbate when switched to small which reveals a decrease in
the LDOS of about20% aroundEF . The obtained dip is slightly asymmetric and can be
successfully described by the Fano equation 4.3 as seen in the least-square fit (blue curve).
The Kondo temperature obtained from the fit isTK = 48 ± 3 K. Surprisingly, the shape of
the curve leads to a smallnegativeform factor ofq = −0.12 ± 0.05.

The voltage dependent switching behavior is plotted in detail in figure 4.11. Here,z(VT )
curves are shown which were recorded on top of a switching adsorbate in constant-current
mode, i. e., with closed feedback loop. Starting atVT = −40 mV where the bistable object
is in its large configuration, the absolute value of the tunneling voltage was increased until
−153 mV, the end of each measurement. The curves show at a specific voltage (marked
at each curve in red) a sudden jump in the tip height originating from the transition of
the adsorbate to its small appearance. While eachz(V ) curve is the average of about15
measurements and the transition does not always occur at identical tunneling voltage, a
steplike structure is seen especially in the measurement atIT = 500 pA. Comparing the
average transition voltage for different tunneling currents results in an almost logarithmic
dependence as shown in the inset. While the tip-sample distance depends logarithmically
on the tunneling current (see equation 2.5), we can concludethat the transition voltage
mainly depends on the tip-sample separation. Furthermore,we note that the switching is
independent of the applied polarization ofVT , i. e. tunneling voltages below≈ −90 mV as
well as above≈ +90 mV change the state of the adsorbate from large to small appearance.

Comparing the data of the adsorbates on different Ag(100) sample preparations with
varying low Ce coverages (≤ 0.01 ML) and different PtIr tips, we always detect the above
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Figure 4.10: Left: STM topography of a two-state object recorded atVT = −80 mV,
IT = 500 pA. Image size:2.3 × 3.3 nm2. Right: ThedI/dV spectrum obtained on top of
the bistable object in large appearance shows no characteristic feature (green dots), while
the spectrum taken on the same object in small appearance an asymmetric dip aroundEF is
detected (red dot). A least-square Fano-fit (blue line) results in the following parameter set:
EK = 0.9±0.1 meV,Γ = 4.2±0.3 meV,TK = 48±3 K, q = −0.12±0.05. Experimental
settings:T = 4.7 K, Vm = 1 meV,IT = 500 pA.

described behavior. Between5− 50% of all adsorbates are bistable and reveal a dip around
EF in spectroscopic measurements when switched to the small apparent size. Additionally,
results measured at a reduced base temperatures of3.7 K by pumping on the He bath [79]
are identical. A height analysis of about700 stable and bistable adsorbated show a small
difference between the extent in thez direction of the stable (z height:230± 10 pm) and of
the large state of the switching adsorbates (z height:210 ± 10 pm).

To this end, the observations are reminiscent of theγ–α transition of metallic cerium.
It is well known, that the electronic and magnetic properties of Ce show extreme variations
with temperature and pressure which is unique among elemental solids [116]. At ambient
conditions, solid Ce is in theγ-phase with a magnetic susceptibility ofχ ≈ 4.8 × 10−3

and a Kondo temperature ofkBTK ≈ 10 meV [134, 135].2 At high pressure or low tem-
perature theγ-phase collapses into theα-phase with an isostructural3 volume reduction of
up to17% (figure 4.12) [137]. Cerium in theα-phase looses almost its magnetic properties
and has a much smaller magnetic susceptibility ofχ / 0.4 × 10−3. Additionally,α-Ce has

2In this thesis SI units are continuously used. Thus, the unitof the magnetic susceptibilityχ is converted
from the cgs-system as still used in several publications with the conversion factor:1 emu

mol
= 4π × 10−6 m3

mol
≈

0.60 (for γ-Ce) [136].
3Isostructural transition means that the crystal structurein both phases remains fcc.
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Figure 4.11: The switching of the bistable object analyzed by ramping the tunneling voltage
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same voltage. The stairway-like steps, especially in theIT = 500 pA curve, are due to an
averaging over about15 curves with occasionally large variations of the transition voltage.

an increased Kondo temperature ofkBTK ≈ 200 − 250 meV [139], more than an order of
magnitude higher than of Ce in theγ-phase. Extensive experimental and theoretical investi-
gations have shown that these phenomena are caused by the electronic correlations resulting
from coupling of the localized4f states to delocalized band states [140, 141, 142, 135, 143]
which is reflected in the exceptional change of the Kondo temperature. During this transi-
tion, the occupancy of thef -level nf changes only slightly while the hybridization with
thes− p band changes by a factor of about two [135] which influences the Kondo temper-
ature exponentially (see equation 4.2). Furthermore, measurements using high-resolution
photoemission electron spectroscopy (PES) on ultrathin Celayers show reduced Kondo
temperatures ofkBTK ≈ 5 meV andkBTK ≈ 26 meV for γ-Ce andα-Ce, respectively
[113, 114].

The strong reduction of the Kondo temperature in thin layersand on single atoms is
observed in all Kondo systems. For instance, single Co adatoms supported on noble metal
surfaces reveal a Kondo temperature ofTK = 30 − 100 K in STS [120] (see also figures
4.5 and 4.6) much lower than the bulk Kondo temperature ofTK ≈ 1000 K [59] due to
the subsequently reduction of the number of available neighbors in dimensionally reduced
systems which leads to a decrease of hybridization of the magnetic impurity with the bulk
electronic system of the supporting crystal [144].
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Figure 4.12: Left: Thep − T phase diagram of solid cerium taken from [138]. Theγ − α
transition appears at temperatures below≈ 190 K at low pressure, or at high pressures at
ambient temperatures. Right: Along with a change in the magnetic susceptibility, the lattice
constanta0 of the crystall changes drastically during theγ − α transition [137].

With these considerations, the observed drastic change in the spectrum on top on the
bistable adsorbates might be the counterpart of theγ–α transition in bulk Ce on the single
atomic scale. The tip-controlled apparent Ce height reduction of about50% can be ra-
tionalized by considering low-energy electron diffraction (LEED) and STM investigations
of the valence transition induced surface reconstruction of Sm(0001) [145, 146] which is
associated with a22% expansion of the atomic radius for the top monolayer surfaceSm
atoms due to the transfer of a valence electron to the4f shell which effectively shields the
Coulomb attraction of the nucleus. Assuming the4f1 level of the Ce adatom at an energy
of ǫf ≈ −2 eV and a Coulomb repulsion ofU ≈ 5 eV (see figure 4.2) [113, 114, 143], the
Kondo temperature can be plotted versus the hybridization∆ using equation 4.2 as shown
in figure 4.13. The occupancy is given by equation 4.7 tonf = 0.9, in good agreement
to earlier measurements onα-Ce ofnf = 0.88 [113, 114], and the calculated value using
the parameters of the fit in figure 4.10 and equation 4.5 (nf = 0.89 ± 0.05). Changes of
nf caused by the transition are neglected in this simulation. The Kondo temperature of
kBTK ≈ 4.2 meV as observed in the small appearant state of the Ce adatom,is compatible
to ∆ ≈ 0.34 eV. Becauseγ-Ce is weaker hybridized thanα-Ce, the corresponding Kondo
temperature is below the instrumental resolution, in agreement with the featurelessdI/dV
spectrum on top of the bistable adsorbates in the large state.

Even though the above outlined explanation is reasonable toexplain the observed height
and spectroscopic differences between both states of the switchable adsorbate, several ques-
tions remain open and can lead to an alternative explanationof the observations.

In all experiments, we found only a certain amount of bistable adsorbates (5 − 50%),
while the remaining are unchangeable. Furthermore, we wereable to transform bistable
adsorbates into stable and vice versa by applying short voltage pulses to the adsorbates as
shown in figure 4.14. But while the transformation wasalwayspossible from the unstable to
the stable configuration, the backward direction was hindered after several switching events.
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Figure 4.13: Simulation of the Kondo temperatureTK for variable4f level-broadening∆
using equation 4.2 with fixed values forU = 5 eV, andǫF = −2 eV (see figure 4.2). Arrows
mark the Kondo temperatures ofγ- andα-Ce measured on thin films. In this framework the
measured Kondo temperature ofTK = 48 K for α-Ce (figure 4.10) would lead to a broad-
ening of∆ ≈ 0.34 eV, while the Kondo temperature forγ-Ce is below the spectroscopic
resolution (yellow area).

Additionally, we found strong evidence of having co-adsorbed contaminations in several
images. It is known that CO molecules and single H adsorbateson metal surfaces are
detected in STM images rather as depressions than as protrusions [147, 148, 149]. Similar
depressions were often found in the STM images close to the bistable adsorbate as it can be
seen in figure 4.14 below the adsorbate.

Furthermore, clusters were found on the surface which reveal distinct spectra which
are the result of inelastic tunneling processes, as shown infigure 4.15. Here, the spectra
reveal a steplike increase (curves (a) and (b)) or decrease (curve (c)) in the differential
conductancedI/dV at an energy of|eVT | ≈ 18 meV. The curves differ by the setpoint
current and therefore by the nominal tunneling resistanceRT before opening the feedback
loop and obtaining the data. The ratio between the conductivity of the ground stateσg

and the excited stateσex (see chapter 2.3.3) changes almost logarithmically as shown in
figure 4.15 (d). The origin of the vibrational mode at an excitation energy of≈ 18 meV is
unknown but might be due to a complex vibration mode between co-adsorbed CO or H, the
Ce adatoms, and the supporting Ag(100) surface. Remarkably, all dI/dV spectra shown in
figure 4.15 reveal in addition a dip aroundEF of about5 meV half-width at half-maximum
which is only marginally influenced by the tunneling resistanceRT .

Furthermore, not all spectra obtained on top of the bistableadsorbates in the small
configuration reveal the typical asymmetry aroundEF as shown in figure 4.10 (b) and char-
acteristically for the Fano resonance. In Figure 4.16, suchdI/dV curves are plotted for
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Figure 4.14: “Switching” between bistable and stable configuration by applying short
(20 ms) pulses between tip and sample. (a): Initial image; (b) Image recorded after ap-
plying aVT = −4 V pulse at the marked position; (c): Pulse ofVT = +4 V applied during
the scan at the marked position. The white arrows indicate the scan direction. Tunneling
parameters:VT = −100 mV, IT = 100 pA. Image size for all images:5.8 × 5.8 nm2.

different tunneling resistancesRT . All spectra show an identical symmetric dip within
the limits of resolution. The spectra remind us of the spectrum produces by an inelastic
tunneling process in the limit ofkBT ≈ Ei (see chapter 2.3.3 and figure 2.8)). Indeed,
performing a least-square fit of the IETS equation 2.24 to thedata results in a good agree-
ment between fit and data as shown in figure 4.16 (red lines). The best fit parameters are
Ei = 3.2±0.9 meV for the excitation energy of the inelastic process, andTfit = 6±2 K for
the temperature. The large fitting range of about±30% for both parameters, i. e. the range
in which the calculated curves agree with the obtained data,is due to the resolution limit in
IETS of≈ 2 meV at a base temperature ofT = 4.7 K of the instrument (see page 15).

To determine the influence of hydrogen on the measurements, first experimental results
are obtained by dosing pure H2 gas through a microvalve into the STM chamber on the cold
sample. Figure 4.17 (a) shows a STM image in pseudo 3D representation of7.7 × 3.6 nm2

size after dosing hydrogen gas. The image shows a Ce adatom ofabout200 pm apparent
height (labeled with I) and a small indention in the surface of about50 pm apparent depth
which is found close to the adsorbate and labeled with II. Spectroscopic measurements
were performed on the hydrogen contaminated surface. The results are presented in figure
4.17 (b). The curve I was measured on top of the adsorbate and reveals a spectrum mainly
identically to the one presented in the beginning of this section in figure 4.10 (b). A least-
square fit using the Fano equation 4.3 results in the parameters EK = −0.7 ± 0.1 meV,
Γ = 3.5 ± 0.3 meV, andq = −0.20 ± 0.05. These results are within their uncertainties
identical to the earlier observations. ThedI/dV spectrum measured at point II in a distance
of about1 nm from the adatom reveals a different shape which we associate mainly to a
vibrational mode of the hydrogen adatom of≈ 5 meV excitation energy. Due to the small
distance to the adsorbate, it can not be excluded, that the spectrum is still influenced by the
adsorbate [95, 117].

Unfortunately, further investigations have not yet been performed, so that the final an-
swer of the origin of the observed switching and the spectralfeatures is not yet given.
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Figure 4.15: (a)-(c): Set ofdI/dV curves obtained on a small Ce cluster on Ag(100) at a
base temperature ofT = 4.7 K using a modulation voltage ofVm = 1 mV. The spectra
reveal a distinct dependence on the tunneling resistanceRT . At relatively highRT , the
ground state conductivityσg is higher than the excited state conductivityσex, while the
situation is inverse at lowerRT . (d): The ratioσg/σex obtained from the spectra (a)–(c)
shows a logarithmically dependence inRT .

4.4 Summary

The experimental observations obtained on single Ce adatoms supported on different silver
surfaces as presented in this chapter are ambiguous. In contrast to the clear manifestation of
the Kondo effect in spectroscopic measurements on top of single Co atoms when supported
on noble metal surfaces (figures 4.5 and 4.6) and detected by several groups [117, 47, 59,
144], the unequivocal detection of the Kondo effect originated by single Ce adatoms was
not possible in this thesis.

Ce adatoms on the Ag(100) surface reveal spectroscopic features which might be partly
due to the Kondo effect. Unfortunately, we are not able to exclude a co-adsorption of hydro-
gen which can strongly influence the Kondo temperature and show vibrational signatures
in the dI/dV spectrum similar to a narrow Fano resonance. As the chapter 5.3 will ad-
dress, single Co adatoms on the Cu(111) surface show no longer the characteristic Kondo
scattering in thedI/dV spectrum as shown in figure 4.6 when exposed to hydrogen.

To clarify the origin of the switching and the observed spectroscopic features detected
on Ce adatoms at Ag(100) it is highly recommended to perform measurements at signifi-
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Figure 4.16: Black lines: Set ofdI/dV curves measured on top of a bistable adsorbate in
small configuration at different tunneling resistances. A1/10 voltage divider was included
between the voltage supply and the junction to reduce the voltage noise and to increase
the energy resolution. Additionally, a low modulation voltage ofVm = 500 µV was used.
Red lines: Fit to the data using the IETS equation 2.24. The best fits result in:Ei =
3.2 ± 0.9 meV and a temperature ofTfit = 6.7 ± 1.4 K. The curves are shifted vertically
with respect to each other by0.1 units for better visualization.

cantly lower temperature. The base temperature of liquid helium is not sufficient to obtain
an energy resolution in spectroscopic measurements to clearly distinguish between the dif-
ferent processes with a shape analysis of the spectra. Additionally, the contamination of the
sample by hydrogen has to be ruled out. Unfortunately, hydrogen gas is always present in
low-temperature measurements and due to its small mass it isonly poorly pumped by the
getter pumps of the STM system. Nevertheless, it might be possible to reduce the hydrogen
contamination by including a non-evaporable getter pump closely to the STM in the low
temperature part [150].

Such an equipment, which will be soon available in our lab, allows to contaminate the
Ce/Ag(100) sample with H2 and additionally with D2 in a controlled manner. This exper-
iment would help to distinguish between vibrational excitations and the Kondo effect, due
to the mass-effect in IETS [35, 130, 48, 151]. Additionally,a lower base temperature would
also allow to measure the spectrum of single Ce adatoms on theAg(111) surface which is
so far hindered by the mobility of single Ce adsorbates on Ag(111) or superimposed by the
change in the LDOS due to the superlattice creation as discussed in chapter 3.4.
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Figure 4.17: (a): Pseudo 3D representation of an STM image ofan individual Ce adatom on
Ag(100) after dosing H2 on the cold sample. Tunneling parameters:VT = −43 mV, IT =
100 pA, T = 4.7 K. Image size:7.7 × 3.6 nm2. (b): Spectra obtained on three different
points in the image marked with I–III by using a modulation voltage ofVm = 1 mV during
thedI/dV measurements. The full line at I is a least-square fit using the Fano equation 4.3
and resulting in:EK = −0.7 ± 0.1 meV,Γ = 3.5 ± 0.3 meV, andq = −0.20 ± 0.05.
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Chapter 5

Measurements with superconducting
tips

5.1 Introduction

Experiments using superconducting materials in planar tunnel junctions for one or both
electrodes have already been performed in the early 1960s [15, 152, 153, 16, 154, 155], but
it is only in the last few years that superconducting tips have been successfully used in STM
[156, 157, 158, 159, 160, 161].

There are several problems to solve before one can successfully use superconducting
tips in STM experiments. Up to now, all published spectroscopic measurements where
performed with elementary superconductors (see references above) leading to the problem
that even for metals with the highest critical temperatureTC , i. e. niobium (TC = 9.25 K)
and lead (TC = 7.2 K) [136], an essential cooling of the STM down to liquid helium
temperature or lower is required. Additionally, the designof the electronic equipment, in
particular the voltage generator for the tunneling voltageand the current-voltage converter,
has to be selected for extremely low (voltage) noise to make spectroscopic measurements
in the sub-millivolt range possible (see also chapters 2.3.2 and 2.3.5).

To overcome these complications, one could imagine using high-TC superconductors
as tip materials. Unfortunately, these materials are very brittle which makes it extremely
difficult to produce a sharp tip, even though first attempts have been made to create super-
conducting tips made out of MgB2 crystals [162]. Additionally, high-TC superconductors
are not yet well understood on a theoretical level which makes it difficult to interpret the
obtained spectroscopic data, but might be by itself an interesting subject to explore.

In this chapter we will present data which was obtained usingsuperconducting niobium
tips. The major part of the measurements were done at theIBM Research Divisionin the
STM group ofDon Eigler1 at theAlmaden Research Center, San Jose, California. Here
excellent conditions for STM and STS measurements are givenby a 3He Joule-Thomson
refrigerator [48] which has the capability of cooling down the STM to a base temperature of
only 0.55 K resulting in a spectroscopic energy resolution of a fewµeV. Additionally, the
setup has the option of applying magnetic fields between0 − 7 T parallel or perpendicular
to the sample surface.

1The head of the STM group has since changed and is nowAndreas Heinrich.
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The experiments can be divided into two categories. As discussed in chapter 2.3.5,
superconducting tips can be used to boost the resolution of STS measurements below the
limit of their normal-conducting counterpart, which was used to measure excitations of very
low energy (section 5.3). Additionally, tunneling betweentwo superconductors reveals by
itself very exciting physics of multipleAndreevreflections [163, 164], as we will discuss in
section 5.4 [165], and ofJosephsonsupercurrent [166], which will be the subject of section
5.6.

Furthermore, in section 5.5, the interaction between two superconducting electrodes
(i. e. tip and sample) and a magnetic adatom will be presented, giving an outlook on the
interesting physics and opportunities that measurements with superconducting tips open.

5.1.1 Preparing superconducting tips

For the preparation of superconducting Nb tips two different techniques were used in this
work. To produce sharp and stablenormal-conducting tips, electrochemical etched tungsten
wires are widely used [17]. This etching process was appliedto Nb where we used the
following procedure [167, 168]: A purified (99.99%) polycrystalline Nb wire of0.25 mm
diameter was degreased with isopropyl and immersed approximately 1.5 − 2 mm deep
in a solution of 25% HCl in water. The electrochemical etching was then performed by
applying a50 Hz ac voltage of approximately24Vrms between the wire and a graphite block
used as counter-electrode. The ac current was recorded during the etching and showed a
slow, almost linear decrease until a certain point at which the current dropped much faster,
marking the endpoint of the etching process for sharp tips. Such tips are covered with a
thick layer of different insulating oxides like NbO, NbO2, and Nb2O5. These tips were
afterwards transfered into the preparation chamber where the oxide layer was removed by
Ar ion sputtering. After this procedure, the tips are able toimage the sample surface with
atomic resolution.

The second method used by us was, in a way, a more “brute force”technique. While
the exchange of tips in the STM at theIBM lab is difficult to perform and can only be
done by breaking the vacuum, we attached a Nb microcrystal ona normal-conducting Ir tip.
Therefore, a Nb(110) single crystal sample was cleaned by successive cycles of heating and
Ar-ion sputtering until we resolved a flat surface (see figure5.1 (a)) [169]. By indenting the
Ir tip between1− 20 µm into the Nb sample, we attached a Nb microcrystal on the apexof
the tip as schematically drawn in figure 5.1 (b), resulting ina superconducting gap ranging
from 21% - 86% of the bulk Nb value, i. e.∆ = 0.31 − 1.27 meV.

Superconducting tips produced with this method show an unexpected stability. Without
mechanically destroying the tip, measurements with tunneling currents up toIT = 500 nA
and tunneling resistances down toRT = 8 kΩ were performed. Additionally, the tips were
sharp enough to resolve atomic resolution as seen in figure 5.1 (a).

5.1.2 The BCS model of superconductivity

The sudden disappearance of conductivity below a critical temperature, which was already
detected in several materials at the beginning of the 20th century starting with the early
measurements ofH. K. Onnes[2] (see figure 1.1 on page 2), is surely the most known
characteristic of superconductivity. At that time, when the quantum mechanical revolution
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Figure 5.1: (a): Image of the Nb(110) surface (50 × 50 nm2, VT = 50 mV, IT = 1 nA)
observed with a superconducting tip. Bottom left inset:2.4 × 4.1 nm2 detail revealing
atomic resolution (b): Schematic of the superconducting tip used. A microcrystal of Nb
was attached to a normal-conducting Ir tip by indenting the tip into the Nb(110) crystal.

has not yet started, it was impossible to explain the effect adequately. Additionally, with
the observation of the perfect diamagnetism of superconductors by W. Meissnerand R.
Ochsenfeld[170], it became clear that superconductivity is more than the simple loss of
electrical resistivity in certain materials.

It took more than 40 years until superconductivity was successfully put in a quantum
mechanical framework, the so called BCS model, afterJ. Bardeen, L. N. Cooper, andJ.
R. Schrieffer[5]. This section gives the outline of this theory with the emphasis on the
topics necessary for the interpretion of tunneling measurements. The BCS theory is based
on an assumption that under certain conditions an attractive interaction can exist between
electrons near the Fermi surface of a metal. These interactions were first proposed byH.
Fröhlich [171] and independently byJ. Bardeen[172]. They showed that such an interaction
can occur by the exchange of virtual phonons.

This attractive interaction may arise when an electron withmomentum~k1 polarises a
lattice of positive ions to such an extent that it is overscreened, resulting in an attractive force
on a second electron with the initial momentum~k2 (see figure 5.2). The overscreening can
only occur when the difference in energy between initial andfinal states is smaller than the
energy of lattice vibrations, and thus the exchanged phononis a virtual one [173, 174]. The
maximum momentum exchange~q between the two interacting electrons is limited. The
scattering process takes place only from an occupied state into an empty state. Therefore,
all scattering events have to occur in a narrow energy range aroundEF of width ±~ωD,
with ωD as theDebyefrequency of the lattice which characterizes the cut off of the phonon
spectrum in the crystal.

By using this positive electron-electron interaction,Cooperconsidered in 1956 [175]
what would happen to two electrons added to a Fermi sea atT = 0. The electrons were



74 Measurements with superconducting tips

Figure 5.2: (a): Interaction between two electrons by exchange of a virtual phonon. An
electron with the momentum~k1 interacts with one with momentum~k2. Conservation of
momentum requires~k′1 = ~k1 − ~q and~k′2 = ~k2 + ~q. (b): The interaction can be understood
by assuming an overscreened response of the positive lattice ions initialized by a passing
electron (I). The local positive charge than attracts a second electron (II).

only allowed to interact with each other via the above described interaction, but not with
the electrons of the Fermi sea except by Pauli exclusion, which excludes them from already
occupied states, i. e. from states below the Fermi energy. Heshowed that the lowest energy
state is reached when the momenta of the two electrons are opposite, i. e.~k2 = −~k1, so that
pairs with a total momentum of zero are energetically most favored. To additionally satisfy
the Pauli exclusion principle and the indistinguishability of the electrons in the pair, the total
wavefunction of the two-electron system has to be antisymmetric for the permutation of the
electrons, meaning that the electrons themself have to be inan antisymmetric singlet spin
state with oppositely directed spins,2 so that the two-particle wavefunction can be written
as:

φ2e− =
1√
2

(

|↑〉1 |↓〉2 − |↓〉1 |↑〉2
)

, (5.1)

with |↑〉i as thei-th electron in spin up and|↓〉i as thei-th electron in spin down state.
As a consequence of the positive interaction, all electronswill pair and thus go into

this new state as long as the gain in energy is greater than zero. The new ground state of
the Fermi sea, which results from the pairing of the electrons, is determinated by a complex
interplay between the electrons. The paired electrons are called Cooper pairs in honor of his
introduction of this concept. Because of the opposite spin of the two electrons, the Cooper
pairs have a sum spin of zero and act more like bosons which cancondense according to the
Bose-Einsteinstatistic into the same energy level.

The pair (~k↑,−~k↓) can be occupied or unoccupied so that we can choose the following

2This might not be the case in high-TC superconductors, where symmetric triplet spin interactions is in
discussion.
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representation for the wavefunction:

|ψ〉~k = u~k
|0〉~k + v~k |1〉~k , (5.2)

where|1〉~k and|0〉~k are the wavefunctions for the pair (~k ↑,−~k ↓) in occupied and unoccu-
pied states, respectively. We note that|1〉~k and|0〉~k are orthogonal to each other.w~k

= v2
~k

is

now the probability of finding the electron pair occupied, and 1 − w~k
= u2

~k
the probability

of finding it unoccupied. The BCS ground state of the superconductor is approximatively
the product of all pair states [173]:

|φBCS〉 ≃
∏

∀~k

(
u~k

|0〉~k + v~k |1〉~k
)
. (5.3)

The equation 5.3 can be rewritten in second quantization as:

|φBCS〉 ≃
∏

∀~k

(

u~k
+ v~kb

∗
~k

)

|0〉~k , (5.4)

with b∗~k = c∗~k,↑c
∗
−~k,↓ as the operator for the combined creation of two electrons inthe Cooper

pair state (~k↑,−~k↓).
While v~k andu~k

obey the relationv2
~k

+ u2
~k

= 1, one can rewrite the prefactors by using
only one variablev~k = cos θ~k andu~k

= sin θ~k. The fraction of occupation for the BCS
ground-state atT = 0 is than calculated as (see for example [72] or [173]):

w~k
= v2

~k
=

1

2

(

1 − E√
E2 + ∆2

)

, (5.5)

with ∆ as the gap energy of the superconductor. The function, plotted in figure 5.3, reminds
one of the Fermi-Dirac distribution at the critical temperatureTC = 1

1.76kB
∆ of the super-

conductor3. Of course we have to keep in mind thatwk is only described with equation
5.5 inside the small energy windowEF ± ~ωD in which the interaction energy between the
paired electrons is positive.

In most tunneling experiments, we are not interested inwk but in the so called quasipar-
ticle excitation spectrum. To excite a single electron in the superconductor from an occupied
state belowEF to an empty state above, an energy of at least2∆ is necessary to break a
Cooper pair leading to a gap of2∆ width around the Fermi energy. The exact form of the
quasiparticle excitation spectrum is plotted in figure 5.3 and calculated in the framework of
the BCS theory as:

ρ(E) = ℜ
{

E − iδ
√

(E − iδ)2 − ∆2

}

, (5.6)

where, in addition to the BCS theory, a small imaginary partiδ is added to the energy
to account for the finite lifetime of the quasiparticles at the gap edge [176].δ is usually
relatively small, within a few percent of the gap energy∆.

In figure 5.4 we outline schematically the tunneling betweena superconductor and a
normal conducting metal. The top curves (ρt) are drawn using the quasiparticle excitation

3Here we see clearly that we do no longer have a single electronstatistics.wk is similar to the Fermi-Dirac
distribution atTC even if we have plotted the curve for a temperature ofT = 0.
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Figure 5.3: Dashed line: Plot of the fraction of occupation for the BCS ground state at
T = 0 (equation 5.5). The cut-off atEF ± ~ωD is not shown. Full line: Quasiparticle
excitation spectra (equation 5.6) withδ set to0.01∆. The energy for both plots is given
relatively to the Fermi energyEF in units of the superconducting gap∆.

Figure 5.4: Quasiparticle excitation spectra for a Nb superconductor with∆ = 1.47meV
(ρt), and density of states for a normal metal (ρs). (a): AtT = 0.5 K almost no electron-like
states aboveEF , and hole-like states belowEF exist in the superconductor. The Fermi-
Dirac distribution for the normal conducting electrode hasa sharp edge atEF . (b): At
T = 5 K some electron-like states aboveEF , and some hole-like states belowEF exist in
ρt, while the Fermi-Dirac distribution inρs is smeared out aroundEF .
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spectrum of equation 5.6. They are divided into two parts labeled “e” and “h” to account for
occupied (electron) states and unoccupied (hole) states. This is similar to the band notation
in semiconductors and in some cases is very helpful as we willsee below. Nevertheless, we
must be aware that the situation in a superconductor is quitedifferent from a semiconductor
and that these notations should not lead to the assumption that the physics of superconduc-
tors are similar and applicable to models used in semiconductor physics. The difference
between the plots in figure 5.4 (a) and (b) is the temperature of the system. In (a) we have
assumedT = 0.5 K which is far below the critical temperature ofTC = 9.2 K for a Nb
superconductor with∆ = 1.47 meV. The electron states are filled up toEF − ∆, while the
occupied hole states only exist atE > EF + ∆. The electron densityρS of the metallic
electrode shows a sharp, step-like decrease atEF .

The situation is different in (b) where the temperatureT = 5 K is elevated compared
to (a) and the thermal energykBT = 0.43 meV ≃ 0.3∆ is of the same order as the super-
conducting gap energy. At once, one remarks the influence of the higher temperature on the
electron densityρs. In the metallic electrode, the occupation of electrons is smeared out in
a range of about4kBT aroundEF (see also chapter 2.3.2), but the quasiparticle excitation
spectrum of the superconducting electrode remains mostly unchanged.4 The only differ-
ence from the low temperature curve is that a small part of electrons have enough energy to
overcome the gap and thus fill states above the Fermi energy leaving the same quantity of
hole states belowEF .

5.1.3 Andreev reflections

To describe tunneling between two superconductors, equation 5.6 has to be used for theρt

in the tip as well as for theρs in the sample. Using equation 2.9, the convolution ofρt and
ρs leads to adI/dV spectrum which has a gap of±(∆1 + ∆2) width aroundEF . Here
∆1 and∆2 are the superconducting gap energies of the tip and the sample, respectively.
Assuming a finite temperature and thus some electronic excitations aboveEF as displayed
in figure 5.4 (b), additional peaks are detected in thedI/dV spectrum at±|∆1 − ∆2| as
shown in figure 5.5. These features diminish whenkBT ≪ ∆1,2.

As we will see in section 5.4, the above described structure of the dI/dV spectrum of
the superconductor-insulator-superconductor tunnelingis only valid if the coupling between
both superconductors is weak, i. e. the tunneling resistance is high (RT ' 1 MΩ).

In stronger coupled tunneling junctions new features occurinside the gap due to An-
dreev reflection processes. This mechanism was first pointedout byA. F. Andreevin 1964
[178] and is schematically presented in figure 5.6 followingthe description ofG. E. Blonder,
M. Tinkham, andT. M. Klapwijk [163, 164].

In this figure, a voltage2∆ > |eVT | > ∆ is applied between two equal superconduc-
tors.5 We assume now that an electron (1a) moves from a state belowEF1 − ∆ in the left
superconductor 1 into the right superconductor 2. While in superconductor 2 no electron-
like empty states are available for the incoming electron, this process can only occur if the
electron is backscattered into a hole (1b) which tunnels in the opposite direction back to the

4∆ is a function of temperature, but as long asT is sufficiently smaller thanTC it decreases only slightly.
At T ≈ 0.5TC it is still a good approximation to set∆(T ) = ∆(T = 0).

5It is not necessary to have equal superconductors as we will see in section 5.4.∆1 = ∆2 is only chosen to
simplify the derivation outlined in this section.
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Figure 5.5: Upper curve:dI/dV spectrum between a superconducting sample with∆1 =
1.47 meV and a superconducting tip with∆2 = 0.4 meV atT = 4.2 K (RT = 5 MΩ,
Vm = 28 µV). Peaks are visible ateVT = ±(∆1 + ∆2) and at±(∆1 − ∆2) due to
quasiparticle tunneling (spectrum is shifted by one unit for better visibility). Lower curve:
Simulation using equation 5.6 to describe the excitation spectra in tip and sample. The
dI/dV spectrum was then calculated with equation 2.9. The difference between simulation
and measurement at|VT | ≫ 2 mV is caused by phonon excitations in Nb [177] which are
not included in the simulation.

left electrode where empty hole-states are available.
The electron (1a) is “mirrored” on the Fermi energy of the right superconductor 2 dur-

ing this Andreev reflection process. The incoming electron(~k, ↑) with an energyE1a is
reflected into a hole(−~k, ↓) with opposite energyE1b = −E1a in respect toEF2. Af-
ter this process, two electron charges are transported across the junction from left to right,
creating a Cooper pair inside the gap of the right superconductor.

To calculate the probability|a|2 of the occurrence of an Andreev reflection process, we
write the incident electron wave function as:

ψinc =

(
1

0

)

ei
~k~x, (5.7)

the reflected hole-like wave function as

ψrefl =

(
0

1

)

e−i~k~x, (5.8)

and the transmitted wave function as

ψtrans =

(
u

v

)

ei
~k~x. (5.9)
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Figure 5.6: Sketch of the Andreev reflection process betweentwo superconductors. Dashed
lines: Quasiparticle excitation spectrum for the left and right superconductor. Red lines:
Square of the Andreev reflection amplitudes|a(E)|2. Arrows indicate second order
(1a→1b, 1a’→1b’) (figure (a)) and third order (2a→2b→2c) processes (figure (b)). For
details see text.

Matching the amplitude and derivative at the boundary, we find the Andreev reflection
coefficient to be [164]:

|a|2 =







1 , |E| < ∆

v2

u2
=

|E| −
√
E2 − ∆2

|E| +
√
E2 − ∆2

, |E| ≥ ∆
(5.10)

Whereby the quasiparticle wave function is phase shifted ateach Andreev reflection process
by:

φ = arctan

(

−
√

∆2 − E2

|E|

)

. (5.11)

As we see in equation 5.10, all electrons with|E| < ∆ are completely reflected as a
hole, while the Andreev reflection coefficient|a|2 diminishes rapidly for quasiparticles with
energies|E| > ∆ (see red lines in figure 5.6).

A similar process is possible that involves an incident hole-like quasiparticle (1a’) from
the right superconductor 2, which is Andreev reflected into an electron-like quasiparticle
(1b’) by annihilating a Cooper-pair in superconductor 1. Inthe sum, the 1a’→1b’ process
is equivalent to the 1a→1b one. Both transport two elementary charges across the junction.
Higher ordered processes involving more than one Andreev reflection are possible. In figure
5.6 the 2a→2b→2c transport is drawn as an example of such a higher order process. Here,
three quasiparticles are involved (two electrons and one hole) transferring three elementary
charges across the junction from the left to the right superconductor.
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The threshhold voltage for then-th order process, wheren is the number of elementary
charges that are transported over the junction involvingn − 1 Andreev reflections is given
by:

eVT ≥ 2∆

n
, (5.12)

as it can be easily deduced graphically from figures like 5.6 or 5.23 (page 100).

5.1.4 Supercurrent and Andreev bound-states

It was in 1962 whenB. D. Josephsonpointed out that between two superconducting elec-
trodes not only quasiparticle tunneling is possible, but additionally Cooper pairs should be
able to tunnel across the barrier leaving the quasiparticledistribution unchanged [166, 179].
The tunneling of Cooper pairs leads to a supercurrent, whichcan flow even in unbiased
junctions.

This macroscopic quantum phenomenon is called Josephson effect: the supercurrent is
driven by the phase differenceδ between the wavefunctions of the Cooper pair condensates
of the two superconductors. While the Cooper pairs in the twosuperconducting electrodes
are all in the same state,δ is a collective variable coupling the quantum mechanic observable
directly with macroscopic electric quantities. Josephsonshowed that the effect is described
by two equations

I = I0 sin(δ), (5.13)

V = ϕ0
dδ

dt
, (5.14)

whereI andV are the current and voltage of the tunnel junction,I0 is the critical current
andϕ0 = ~/2e = 3.291 × 10−16 Vs is the reduced flux quantum.

Together, these two equations, are able to describe a wide range of experimental results
and observations. They can be understood easily in the following way: Equation 5.13
describes the dc-Josephson effect, i. e. the phenomena thata current flows between two
superconductors without voltage drop. The supercurrent depends therefore only on the
phase differenceδ between both superconductors and the critical supercurrent I0, which is
given for a temperatureT and equal gaps∆ in both tunneling electrodes by [166]

I0 =
π∆

2RT
tanh

(
∆

kBT

)

, (5.15)

with RT as the junction resistance in the normal conducting state. For unequal supercon-
ductors with∆1(T ) ≥ ∆2(T ), V. AmbegaokarandA. Baratoffshowed that the supercurrent
is calculated as [180]

I0 =
1

RT
∆2(T )K

(√

1 − ∆2(T )2

∆1(T )2

)

tanh

(
∆2

kBT

)

, (5.16)

with T as the temperature andK(x) as Jacobi’s complete elliptic integral of the first kind.
Shortly after the publication of Josephson’s theoretical assumptions, the experimental

evidence of the proposed zero-voltage supercurrent was discovered in thin film measure-
ments [181] and in greater detail in point contacts [182]. Today, experiments are mainly
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Figure 5.7: (a): Andreev bound-states energiesE± for different transmission coefficients
τ and phase shiftsδ between the two equal superconducting electrodes. (b): Sketch of the
Andreev reflection process between two superconductors. The bound states lead to a closed
cycle of quasiparticle tunneling, Andreev reflections, andthe annihilation and creation of
Cooper pairs. During this process, charge is transported in2e quantities across the junction
at zero voltage.

done in break junction experiments [183, 184] due to their ability to achieve single contacts
between both superconductors. Additionally, experimentsusing STM have been performed
[185, 186]. Based on these earlier works, we will present newdata with intriguingly high
energy resolution and probably new effects in section 5.6.

Equation 5.14 describes the so called ac-Josephson effect.Here, the phase between the
two superconductorsδ is no longer fixed. The time derivativedδ/dt is directly proportional
to the voltage across the junction. Thus, an applied small voltage produces an alternating
supercurrent with a frequency off = V

2πϕ0
= 483.5979 MHz/µV.6 The first experimental

observation of the ac-Josephson current was done by applying microwaves to the junction.
Sharp steps in the recordedI − V curves were found when the applied voltage crossed
multiples of2πϕ0f [188, 189, 190]. These steps are calledShapirosteps in honor ofS.
Shapirowho first discovered them [188]. These steps exist due to photon induced tunnel-
ing. The probability of the tunneling increases when the injected electromagnetic wave is
in resonance to the Josephon ac-current. Additionally, thedirect microwave emission of
superconducting junctions was detected [191].

The current transport can be understood within the framework of Andreev reflections
(section 5.1.3). Figure 5.7 (b) shows the principle: An electron tunnels from the left super-
conductor to the right one and is Andreev reflected into a holewhich travels back to the left

6The exact conversion of the applied voltage to an ac-currentwith a conversion factor that only uses physical
constants (equation 5.14) is the basis for ultra-high precision voltage references. While the second is a SI-unit
based on the transition between the two hyperfine levels of the ground state of the cesium 133 atom, frequencies
can be generated with a relative error of≈ 10−14 and thus voltage generators that have sub-nanovolt resolution
in a−1 V − +1 V range are available using the ac-Josephson effect [187].
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superconductor where it is again reflected into the same energy level as the first one. During
each cycle two quasiparticles are transported across the junction which create a Cooper pair
in the right and annihilate one in the left superconductor. Matching the phase shift (equation
5.11) at each Andreev reflection process for arbitrary shortjunctions, the result for coherent
tunneling, i. e. for tunneling in which the overall phase shift in one cycle isn× 2π, leads to
the following Andreev bound-states in symmetric junctions[192, 193] (see figure 5.7 (a)):

E±(δ, τ) = ±∆

√

1 − τ sin2

(
δ

2

)

, (5.17)

with τ as the transmission coefficient of the junction,

τ =
h

2e2
1

RT
= 12.906 kΩ

1

RT
. (5.18)

The current can flow over these two Andreev bound-states in both directions and is given
by the derivative of the bound state energy with respect to the phase difference between both
superconductors:

I±(δ, τ) = ϕ−1
0

dE±(δ, τ)

dδ
. (5.19)

The net supercurrent results from the imbalance of the population of the bound states which
is driven by the external voltage source. For small transmission coefficientsτ , the result for
the supercurrent using equation 5.19 is the same as the equation Josephson found in weakly
coupled superconductors (equation 5.13). Especially, themaximal current is given at the
same phase shift (δ = ±π/2), while for τ → 1 the maximal supercurrent is reached at a
phase shiftδ = π between the electrodes (see figure 5.8).

5.2 First attempts of spin-selective measurements

Triggered by the results of the superlattice formation of the magnetic Ce adatoms on the
Ag(111) surface (chapter 3) and the open question of magnetic interactions therein (see
page 48), together with the effects we have observed in the previous chapter like the switch-
ing of single atoms (page 59 and following) and the Kondo effect (page 51 and following),
we became interested in spin selective measurements.

Measurements which are able to detect the magnetic moment atthe level of single atoms
are of considerable general interest because they provide an additional channel of informa-
tion which promises to give new insight into local magnetic interaction.

In STM measurements, the first attempts to detect magnetism on the nanometer scale
were performed by detecting the polarization of the light emitted from the tunneling junc-
tion between a ferromagnetic Ni tip and a GaAs(110) surface [194] and by the use of CrO2
coated ferromagnetic tips to detect the antiferromagneticorder of Cr(001) terraces [195].
Meanwhile, spin-polarized STM (SP-STM) measurements using ferromagnetic tips to de-
tect magnetic structures were regularly performed by coating a nonmagnetic tip with a thin
layer of Fe [196, 197, 198, 199] or Gd [200, 201]. While ferromagnetic tips have the
disadvantage of influencing the sample by their stray field [196], tips coated with anti-
ferromagnetic Cr are able to overcome this limitation [202,203].
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Figure 5.8: Current-phase relation for different transmissionsτ . For relatively weak coupled
junctionsτ / 0.5 the relation is given by equation 5.14 and has its maximum atδ = π/2.
Forτ → 1 the maximum shifts towardδ = π.

Nevertheless, the spin signal is very small and not sufficient to detect the magnetic mo-
ment of single atoms. A different approach to get magnetic information relies on the strong
influence of magnetism on superconductivity. It is well known that even small amounts of
magnetic impurities can significantly reduce the critical temperature of a superconductor
and even destroy superconductivity [204, 173], while non-magnetic impurities do not influ-
ence the superconductivity in a classical s-wave superconductor much [205].7 Experiments
using a Nb(110) sample and a normal conducting tip have indeed shown different spectral
features when the data were taken on top of magnetic Mn and Gd adatoms while the spec-
trum remained unchanged on top of non-magnetic Ag adatoms [157]. The results could be
understood by assuming an exchange interaction between thelocalized spin of the adatom
and the conduction electrons of the sample which leads to spin-polarized scattering states
in the gap [206].

5.2.1 Direct influence on the superconducting gap

A more interesting method than the one mentioned above is to exchange sample and tip.
The use of a superconducting tip as probe for magnetic atoms on a non-magnetic surface
is promising as we pointed out in the beginning of this section. First measurements of Gd
trimers on Cu(100) with a Nb tip show indeed an influence of theadsorbate on the spectrum
[159].

In the experiments presented here, we used a Nb tip prepared by etching (described
in section 5.1.1) which showed a BCS-like gap when measured at T = 4.7 K against a

7In high-TC superconductors with their complex crystal structure evensmall amounts of nonmagnetic im-
purities can drastically change the superconducting orderparameter.
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Figure 5.9: (a): Spectrum of the Nb tip measured on the bare Ag(100) surface (dots) at
T = 4.7 K andRT = 45 MΩ. The black line is a least-square fit using the BCS-equation
including broadening due to the temperature and modulation. The results of the fit are
T = 4.74 K, ∆ = 1.24 meV, andδ = 5 µeV (b): Spectrum obtained with the same tip on
top of a Co adatom on Ag(100) (dots). The black line is a least-square fit to the convolution
of BCS and Fano function including broadening effects and resulting inT = 4.71 K, ∆ =
1.20 meV, δ = 5 µeV, q = 1.2, EK = 1.78 meV, andΓ = 3.25 meV. The modulation
voltage wasVm = 0.25 meV for both measurements.

Ag(100) sample as plotted with red dots in figure 5.9 (a). The black line is a least-square fit
using equation 2.9 (page 8) withρs as constant andρt given by the quasiparticle excitation
spectrum of equation 5.6. The best-fit results in a BCS gap of∆ = 1.24 meV, δ = 5 µeV,
and a temperature ofT = 4.74 K which is in excellent agreement with the temperature of
T = 4.7 K, measured with a rhodium-iron (Rh-Fe) resistor thermometer in a four-terminal
measurement configuration.

After dosing some Co adatoms from a thoroughly degassed tungsten filament on the
cold Ag(100) sample, we were able to compare the above spectrum with one taken on top
of a single Co adatom on the Ag(100) surface. We ensured that the probed Co atoms had
at least a next neighbor distance of10 nm and thus do not interact with each other by using
only a very low coverage.

The spectra measured on top of the Co adatoms show an asymmetry in the peak height
at the superconducting gap edges (eVT ≈ ±∆) as plotted in figure 5.9 (b) (red dots). Since
it is known that single Co adatoms on Ag(100) show a Fano-likedip aroundEF due to the
Kondo-effect [120] (see figure 4.5 in chapter 4.1.1), we performed a least-square fit using
the convolution of equation 5.6 for the LDOS of the tip and theFano equation 4.3 of chap-
ter 4.1.1 for the LDOS of the Co/Ag(100) sample system to describe the obtained spectrum
following equation 2.9. The results of the homemade fitting routine, which included broad-
ening due to the finite temperature as well as the modulation voltage (see chapter 2.6), are
plotted as a black line in figure 5.9 (b). The Kondo temperature (see equation 4.1) of our fit
results inTK = 38± 5 K, which is in good agreement with the value of41± 5 K observed
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Figure 5.10: (a): Spectra of the Nb tip measured on the bare Cu(111) surface (red dots) and
on top of an adsorbed Co adatom (black dots) atT = 0.6 K, IT = 3 nA, andVm = 71 µV.
(b): After deconvolution an asymmetric dip is detected in the spectrum (red dots) which was
successfully fitted with the Fano function using the parametersq = 0.60, EK = 4.7 meV,
andΓ = 2.8 meV in good agreement with [47, 59]. The discontinuity around EF is due to
limitations of the deconvolution inside the gap.

in earlier measurements [120].

Additionally, we detect a slight decrease of approximatively −3% in the quasiparticle
gap width on top of the Co adatom compared to the bare Ag(100) surface (∆ = 1.20 meV
compared to∆ = 1.24 meV) which might be due to a direct interaction between the mag-
netic moment of the single Co adatom and the pairing energy ofthe superconducting tip.

Unfortunately, this change in the gap width of the fitting results is not significant at
a base temperature ofT = 5 K, i. e. kBT = 0.43 meV. Therefore, to answer the question
whether the magnetic moment of the single Co adatom has influenced the superconductivity
of the Nb tip, measurements at lower temperature are necessary.

We repeated the experiment at the IBM lab at a base temperature of onlyT = 0.6 K
with single Co adatoms on a Cu(111) surface and a superconducting tip by attaching a Nb
microcrystal on an Ir tip (see section 5.1.1). The results, plotted in figure 5.10 (a), show
a much higher resolution due to the lower temperature (0.6 K compared to4.7 K) and the
smaller modulation voltage. The red curve is a BCS-likedI/dV spectrum of the tip mea-
sured on the clean Cu(111) surface showing a quasiparticle gap width of∆ = 1.27 meV.
Placing the same tip over an isolated Co adatom the black curve is recorded revealing a sim-
ilar asymmetry as that seen in figure 5.9 (b) and a change of theLDOS in the quasiparticle
spectum ateV > EF + ∆. We calculate the LDOS of the Co/Cu(111) sample by perform-
ing a deconvolution using the pure BCS-like spectrum (red dots in figure 5.10 (a)) and the
Co/Cu(111) spectrum obtained with the Nb tip (black dots). The result is plotted in figure
5.10 (b) (red dots) and shows an asymmetric dip aroundEF . A least-square fit (black line)
using the Fano equation 4.3 yields a form factor ofq = 0.60 and a Kondo-temperature of
TK = 32±5 K. Even if the obtainedTK is lower than the one detected in previous measure-



86 Measurements with superconducting tips

ments [47, 59], the overall form of the spectrum agrees well with the structure found in the
literature and the data presented in chapter 4.1.1 (Figure 4.6). Furthermore, we do not detect
any influence of the presence of the Co adatom on the gap width in the superconducting tip.

Similar results were obtained for all tunneling currents inthe range ofIT = 50 pA
to IT = 30 nA (i. e. 670 kΩ ≤ RT ≤ 400 MΩ), whereas STS could not be obtained at
higher currents due to tip induced motions of the Co adatom [147, 50]. In particular, no
reduction of the superconducting gap width was detected even when the coupling between
the wavefunctions of tip and sample was increased, i. e. at higher tunneling current.

To summarize, compared to previous measurements on Mn trimers on Ag(100) [159],
the magnetic moment of a single Co adatom hosted on Ag(100) orCu(111) does not change
the gap in a superconducting tip and the previously observedsmall change in∆ might be
due to limitations in the fitting procedure. The reason why this influence is undetectable
might be due to the fact that the magnetic moment of the Co adatom is screened by the
electrons of the metal which is manifested in the observed Kondo-resonance aroundEF .
Thus, the relatively weak-coupled tip is not affected by theatomic moment. Indeed, as
it will be shown later in this chapter (section 5.5), Co adatoms directly supported on a
superconducting surface show a strong influence on the gap structure.

5.2.2 Spin polarized tunneling with superconducting tips

A different approach for performing spin selective measurements with superconducting tips
was proposed byR. Meservey[207]. His idea is based on the experimentally found splitting
of the quasiparticle excitation spectum in thin film measurements between superconduct-
ing aluminum and a normal conducting metal separated by a very thin Al2O3 layer when
a magnetic field is applied [208, 209, 210, 211]. While in the absence of a magnetic field
the quasiparticle excitation spectrum is given by equation5.6, a magnetic field will act on
the spins of the electrons as well as on their orbits. If the superconducting film in thin film
measurements is thin enough, the effect of the field on the electron orbits will be negligible
compared with the effect on the electron spins if the spin-orbit coupling is sufficiently small
[208]. In this case, the quasiparticle spectrum will be split for spin-up and spin-down elec-
trons by an energy of twice theZeemanenergy,E = gµBB, with g ≈ 2 as the gyromagnetic
factor of the free electron,µB = e~/2me = 9.28 × 10−24 J/T= 57.9 µeV/T as the Bohr
magneton, andB as the applied field. The composed spectrum has thus a theoretical form
as shown in figure 5.11 (a), revealing the possibility of getting pure spin-selective currents.

Indeed, it was shown that the tunneling probabilities for spin-up and spin-down elec-
trons are not equal when the second electrode is made of a ferromagnetic material such as
Ni, Fe, Co, or Gd [209, 210] and that in these cases, electronswith the spin direction of the
majority charge carriers in the ferromagnet dominate the tunneling current.

Unfortunately, strong spin-orbit coupling inhibits spin selective measurements with Nb
tips, as seen in the measurements taken on a clean Cu(111) surface and shown in figure
5.11 (b), wheredI/dV curves at different magnetic fields applied in plane to the sample
surface and ranging fromB = 0 − 4 T are plotted.8 A spin-splitting, as schematically

8Remarkably, the Nb microcrystal shows a critical magnetic field of BC ≈ 4 T, much higher than the
bulk value ofBC = 198 mT [136]. This enormous increase can be understood by the confinement of the
superconducting phase into a very small region at the apex ofthe tip.
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Figure 5.11: (a): Theoretical spectra for the spin up and spin down quasiparticles of a su-
perconducting tip in a magnetic fieldB without spin-orbit coupling in the zero temperature
limit. The degeneration of the spin is removed leading to twocurves for each spin direction
separated by an energy of2µBB. (b): Spectra of a superconducting Nb tip in a magnetic
field of B = 0 − 4 T measured atT = 0.6 K, IT = 2 nA, andVm = 71 µV. Due to
spin-orbit coupling the quasiparticle spectrum is not simply split. The interaction between
the orbital and spin moment in the magnetic field leads to a broadening of the spectrum.

drawn in figure 5.11 (a), is not obtained but instead an overall broadening that cannot be
assigned to the different spin directions.

This result can be understood by referring to the theory ofA. A. AbrikosovandL. P.
Gor’kov. They suggested that spin-orbit coupling should increase approximately asZ4,
whereZ is the atomic number of the superconducting element [212, 211]. Thus, Nb with
its relatively high atomic number ofZ = 41 (compared to Al,Z = 13) is not a good
candidate for these kind of measurements. But Al, which was intensively used in thin film
measurements as shown before, is difficult to use as tip material because of its softness
which is in conflict with the need for sharp and stable tips in STM experiments. Addition-
ally, the critical temperature of bulk Al is only1.1 K, which is only by a factor of two higher
than the minimal attainable temperature of the STM used and would therefore lead to sig-
nificant broadening due to thermally excited quasiparticletunneling similar to the results of
Nb atT = 4.7 K (see figure 5.10 (a)). It might be possible to overcome theselimitations by
using stable normal conducting tips coated with an ultra-thin layer of aluminum which has
an increased critical temperature of aboutTC ≈ 2.5 K for a layer thickness of4 nm [207].

Other materials with lower spin-orbit coupling are being discussed for use in STM.
Vanadium, with a critical temperature ofTC = 5.4 K [136], and its compounds, for example
VN, VTi, V 3Ga, and V3Si, might be good candidates [207]. V and VN (TC = 8.2 K [213])
should show significantly reduced spin-orbit coupling due to their smaller atomic numbers
(vanadium:Z = 23, nitrogen:Z = 7) and were found to show spin splitting in magnetic
fields [214]. Experiments using V3Si as tip material might also be interesting. V3Si is
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Figure 5.12: (a): Image of individual Co adatoms (bright spots) on top of a Cu(111) surface
after dosing of hydrogen on the cold sample. Image parameters: 20 × 20 nm2, VT =
−20 mV, IT = 1 nA, T = 0.6 K. (b): The height profile along the arrow in (a) show that
two different species (marked with circles) with differentapparent heights are observed.

known to be a material with a relatively high critical temperature of17.5 K [213], and thus
would allow to perform measurements even at5 K.

5.3 Influence of hydrogen on single Co atoms

In this section we will discuss the enormous change in thedI/dV spectrum of single Co
adatoms supported on a clean Cu(111) surface when additionally hydrogen is dosed and
attached to the Co adatoms.

Using a clean Cu(111) sample on which a low quantity of Co adatom were deposited, we
dosed atomic and molecular hydrogen from a heated tungsten filament. The filament, which
was previously used in a Mn evaporator, had a direct view ontothe cold sample surface. By
placing the filament directly over a mass spectrometer we checked that the Mn source was
exhausted and that indeed only hydrogen, which originate from hydrogen incorporations in
the tungsten wire, was evaporated.

A constant-current topographic image of the Cu(111) surface after dosing hydrogen
with the filament is shown in figure 5.12 (a). On top of the20 × 20 nm2 large detail of
the Cu(111) surface, seven adsorbates are visible as protrusions. While the unchanged Co
adatoms have an apparent height of about90 pm, two objects in the image, which are
indicated by green circles, have a lower apparent height of only ≈ 65 pm as seen in the
line profile (figure 5.12 (b)), which was taken along the arrowin figure 5.12 (a). Additional
visible periodic height modulations of a few pm amplitude are due to interferences between
surface state electrons, which are reflected at the step edge, and at the adsorbates, leading
to standing wave patterns and modulations in the LDOS (see chapter 3.1.2).
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Figure 5.13: Spectra taken atT = 0.6 K andB = 0 using a superconducting Nb tip placed
at different lateral distancesd from the hydrogen-attached Co adatom on Cu(111) (see lower
inset). The upper inset shows an enlargement of the left edgeof the quasiparticle excitation
spectra and reveals two distinct peaks at≈ 1.50 and≈ 1.85 meV. Setpoint parameters
before performing thedI/dV measurements:VT = −5 mV, IT = 2 nA, Vm = 71 µV.

Using the superconducting Nb tip as probe in spectroscopic measurements on the ob-
jects with higher apparent height reveals spectra similar to the one displayed with black dots
in figure 5.10 (a) which allows us to identify them as single Coadatoms. Surprisingly, spec-
tra obtained on the lower species found in figure 5.12 have a completely different structure.
Typical dI/dV spectra of these, presumably with hydrogen-attached Co adatoms, are dis-
played in figure 5.13. They do not show the characteristic asymmetry of the signal strength
at the quasiparticle gap edge, which was identified by deconvolution (see figure 5.10 (b)) to
have its origin in a Fano dip aroundEF due to spin-flip scattering of the Cu(111) electrons
on the magnetic moment of the 3d electron of the Co adatom.

Instead of a Fano dip, we detect a splitting of the superconducting quasiparticle exci-
tation spectrum similar to the expected splitting in a magnetic field as discussed in section
5.2.2 and schematically shown in figure 5.11 (a).9 The effect is strongly localized on top of
the adsorbate and diminishes rapidly when the distance between the point where the spec-
trum is obtained and the center of gravity of the adsorbate isincreased. Already at a lateral
distance of0.4 nm from the center of the adatom, the unperturbed quasiparticle spectrum of
the superconducting tip is mainly recovered.

9But here we have to be reminded that the externally applied magnetic field was set to zero, although an
external magnetic field is the essential condition for the Zeeman splitting described in section 5.2.2.
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Figure 5.14: Simulation of spectra atT = 550 mK assuming tunneling between a supercon-
ducting tip (∆ = 1.31 meV) and a sample with a vibrational state at an energy of300 µeV
resulting in aρs as seen in the lower part (see chapter 2.3.3). Depending on the dip depthχ
the spectrum of figure 5.13 can be reproduced.

The observed spectra can be understood by assuming an inelastic tunneling channel on
the sample side of the tunneling junction. As pointed out in chapter 2.3.3, this additional
channel induces a step like increase in the differential conductance when the kinetic energy
of the tunneling electrons exceeds the threshhold given by the mode energy of the inelastic
process, i. e.|eVT | ≥ Ei, and thus the electrons can tunnel elastically as well as inelastically.

A simulation between a superconducting tip and a sample system with an inelastic tun-
neling channel which has its excitation energy atEi = 300 µeV is shown in figure 5.14.
The calculated spectra show the same splitting as observed in the experiment. A detailed
analysis on several hydrogen-attached Co adatoms results in an energy where the inelas-
tic contribution begins ofEi = 325 ± 50 µeV.10 The increase in conductivityχ at energies
greater thanEi due to the additional inelastic channel is, with approximately 40%, relatively
large.

To get further insight into the physical process originating in the observed spectral fea-
ture, we performed spectroscopic measurements by varying the tunneling current in a large
range, from50 pA to 10 nA, corresponding to a tunneling resistance between100 MΩ and
500 kΩ. The different spectra show, apart from reduced noise at higher IT , no change in
the splitting, i. e. in the mode energyEi or in the depthχ, as seen in figure 5.15. Spectra

10Here we want to emphasize the high energy resolution of the superconducting tip. Even atT = 0.6K
and a modulation voltage ofVm = 71 µV resulting in a broadening of≈ 280 µV due to the temperature and
≈ 160 µV due to the modulation (see chapter 2.3.3) the IETS is clearly detected showing the advantage in
using superconducting tips as discussed in chapter 2.3.5
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Figure 5.15: Spectra measured on top of a hydrogen-attachedCo adatom obtained at
different setpoint currentsIT before the feedback loop was opened. The curves are
rescaled to1/RT with RT as the tunneling resistivityVT /IT determined outside the gap
at VT = −5 mV. They are additionally vertically displaced in respect to each other for
better visualization.

at higher tunneling current could not be measured because a further decrease of the tunnel-
ing resistance results in tip induced movements of the adatom [147, 50]. By performing
such movements we were always able to transform the object back to ordinary Co adatoms
which then recovered the initial apparent height and spectrum, as discussed in the beginning
of the section. This observation can be interpreted as a tip-induced detachment of the hy-
drogen similar to experiments using acetylene on Cu(001) [215] or cobalt phthalocyanine
on Au(111) [122].

To ensure that the spectral features are indeed due to an inelastic tunneling channel, we
applied a magnetic field in plane to the sample surface to drive the tip into the normal con-
ducting region. A field of at leastB = 4 T has to be used to suppress the superconductivity
in the Nb microcrystal of the tip as shown in figure 5.11 (b). Thus, spectra were measured
with an applied magnetic field in the range ofB = 4 − 7 T, which are plotted in figure
5.16. A step-like increase in thedI/dV signal, broadened by the finite temperature and the
modulation voltage, is observed when the tunneling voltageexceeds±Ei/e as expected for
an inelastic tunneling process. A fit to the obtained data using equation 2.24 of chapter 2.3.3
results in excellent agreeing curves shown as black lines. The fitting results are listed in the
table on page 94 and plotted in figure 5.18. They show a surprising linear dependence of
the excitation energyEi with the applied magnetic field.

To this end, we performed local tunneling spectroscopy onlywith a superconducting
Nb tip and a metallic filament as hydrogen source. In an additionally performed control



92 Measurements with superconducting tips

-1.5 -1 -0.5 0 0.5 1 1.5
tunneling voltage V

T
 [mV]

0.8

1

1.2

1.4

1.6
dI

/d
V

 [a
rb

. u
ni

ts
]

B=5.5 T

B=6.0 T

B=7.0 T

B=4.5 T

B=4.0 T

B=5.0 T

Figure 5.16: Spectra taken on top of a hydrogen-attached Co adatom on Cu(111) measured
with a Nb tip which was driven into the normal conducting state by applying a magnetic field
of B = 4 − 7 T thereby exceeding the critical field of the Nb microcrystal(VT = −2 mV,
IT = 1 nA, Vm = 28 µV, T = 0.55 K). The IETS equation 2.24 of chapter 2.3.3 can be
fitted (lines) in excellent agreement to the data (dots).

experiment, we have found similar results using H2 gas as a hydrogen source and a normal
conducting tip. We used a newly cleaned Cu(111) sample onto which a low coverage of
Co adatoms were dosed. Then, we induced pure H2 gas in the room temperature UHV
chamber by a microvalve leading to a partial pressure ofp ≈ 1 × 10−7 mbar for about40
minutes. The shutter to the low temperature stage was openedduring this time to allow the
H2 to arrive at the sample surface. STM images measured with a normal conducting Ir tip
after the exposure show clear signs of hydrogen contamination. We detect ubiquitous noise
which appears in images taken at higher tunneling voltages,similar to recent measurements
[43], and a halo-like shape around the Co adatoms as seen in figure 5.17 (a).

Similar to the experiment described above where a filament was used as a hydrogen
source, we detected that a small quantity of the Co adatoms onto which hydrogen was
bound appear as protrusions in STM images with lower apparent height compared to the
pure Co adatoms. The hydrogen could be detached from the Co adatom by tunneling with
a high current exactly as in the earlier experiment. Tunneling spectra obtained on top of
the hydrogen-attached Co adatoms reveal the same IETS features as observed with the su-
perconducting tip in high magnetic fields, as seen in figure 5.17 (right). The results of
a least-square fit using equation 2.24 for for the spectra here and for the experiments are
summarized in table 5.3 and in figure 5.18.

The resulting values forEi show a non negligible dependence on the applied exter-
nal magnetic field. These observations lead to the assumption that the inelastic tunneling
channel has its origin in a spin-flip process. As it was recently shown, single spin-flip spec-
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Figure 5.17: Left: Image of a single Co adatom (bright spot) on a Cu(111) surface after
dosing H2. A sombrero like circular structure is visible around the adatom (image size:
3 × 3 nm2, VT = 5 mV, IT = 1 nA). Right: Spectra obtained with a normal conducting
Ir tip on top of a hydrogen-attached Co adatom at different magnetic fields (VT = −2 mV,
IT = 1 nA, Vm = 28 µV, T = 0.55 K). The lines are fits to the data (dots) using equation
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Figure 5.18: Graphical representation of the observedEi. Circle: averaged value from
measurements as shown in figure 5.13; squares: data taken from figure 5.16; diamonds: data
taken from figure 5.17. Blue line: linear regression using data from figure 5.16 (B ≥ 4 T);
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B [T] Ei [µeV]∗ χ Tfit [K]

0.0 325 ± 25 ≈ 40% – superconducting tip, see figure 5.13

4.0 388 ± 5 32% 0.63 ± 0.10 superconducting tip, see figure 5.16

4.5 415 ± 5 23% 0.54 ± 0.10

5.0 438 ± 5 19% 0.50 ± 0.10

5.5 461 ± 5 19% 0.54 ± 0.10

6.0 479 ± 5 19% 0.58 ± 0.10

7.0 527 ± 5 22% 0.50 ± 0.10

0.2 354 ± 5 78% 0.52 ± 0.10 normal tip, see figure 5.17 (right)

3.0 390 ± 5 55% 0.53 ± 0.10

7.0 499 ± 5 28% 0.51 ± 0.10

∗ The uncertainty in the determination ofEi is mainly due to the finite stability of the voltage
generator for the tunneling voltageVT . Except for the first line, the error of the fitting is only about
±2 µeV.

Table 5.1: Summary of the data obtained on with hydrogen attached Co adatom on Cu(111).

troscopy can be performed with STM resulting in spectra similar to the presented ones [40].
The spin-flip process can therefore only occur if the tunneling electrons overcome the Zee-
man splitting energy with their kinetic energy and exchangetheir spin momentum with one
3d electron of the Co adatom leaving it in an excited spin state.

Taking only the data obtained with the superconducting tip at fields≥ 4T, as shown in
figure 5.16, and performing a linear regression of the form:

Ei = E0 + gµBBext, (5.20)

with Bext as the externally applied magnetic field,g as the gyromagnetic factor, andµB as
the Bohr magneton, results ing = 0.79± 0.02 andE0 = (209± 8) µeV (blue line in figure
5.18). The form of the function is uncommon, because the Zeeman energy,EZ = gµBBext,
increases linearly with the applied field without having a zero field splitting termE0. Ad-
ditionally, the result ofE0 does not match with the splitting observed in measurements at
B = 0 (figure 5.13 and blue curve in 5.17). For the data obtained atB ≤ 4 T, a least-square
fit using equation 5.20 results ing′ = 0.24 ± 0.08 andE′

0 = (339 ± 12) µeV which is
shown as a red line in figure 5.18.

The results of the above presented experiments are ambiguous. As we have seen, the
dI/dV spectra of hydrogen-attached single Co adatoms differ drastically from the spectra
obtained on pure Co adatoms. While the latter show a well known Fano-like lineshape due
to the Kondo screening of the magnetic moment, the hydrogen-attached Co adatoms show
a IETS-like gap feature with an energy in zero field ofEi ≈ 340 µeV.11

11One could imagine that this dip is due to the Kondo effect witha strongly reduced Kondo temperatureTK

and a symmetrical Lorentz profile, i. e. a Fano factor ofq = 0. But an additionally performed fit on the data

at B = 0.2 T (figure 5.17) using the Voigt function:y = a0

R exp(−t2)

a2

3
+((x−a1)/a2)−t)2

dt/
R exp(−t2)

a2

3
+t2

dt , to take

into account the thermal broadening and the Lorentzian of the Kondo resonance, results in a higher discordance
with the data than the IETS fit and in an Lorentzian width of almost zero (≤ 1 neV !).
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This energy is very small compared to vibronic excitation energies, which are usually
at least one order of magnitude higher. Additionally, the increase in the differential conduc-
tance at|eVT | ≥ Ei is, with 40% and78% (see table 5.3), much higher than for vibronic
excitations whereχ reaches usually only a view tenth of a percent [42, 35, 36].

Applying a magnetic field yields an increase of the characteristic energyEi, reminiscent
of spin-flip spectroscopy. As long as the magnetic field is relative small (B ≤ 4 T) the
corresponding slope, i. e. theg factor, is very small. For higher magnetic fields, the slope
increases resulting in ag factor of0.79 ± 0.02, much smaller than the gyromagnetic factor
for the free electron ofg0 = 2.0023. The small value might be due to influences originating
from the local environment. In planar tunneling junctions,factors ofg = 1.1 andg = 2.6
have been found [216] and were shown to reflect a complex interaction between Zeeman
spin-flip scattering as well as Kondo screening. In the measurements with a magnetic field
of B ≥ 4 T, the observed jump in the conductivity at±Ei is with χ ≈ 20% (see table 5.3)
similar to the increase in spin-flip measurements on single Mn adatoms [40].

The edges of the step in thedI/dV signal are broadened due to the modulation voltage,
the temperature, and the finite lifetime of the excited spin-state. The results ofTfit as listed
in table 5.3 have an average value ofT fit = 0.54 K, which agrees essentially with the
base temperature ofT = 0.55 K, and limits the finite lifetime broadening to∆Elifetime /
0.1 K/kB . Thus, we find a lower limit for the lifetime of spin-flip excitation ofτ ≥ 80 fs.

To summarize, we have to admit that the origin of the observedeffect is unclear. It
might be a superposition of at least two different effects which are necessary to explain the
curve shown in figure 5.18. The role of the hydrogen is therefore mostly unknown, except
that its presence strongly influences the magnetic attributes of the Co adatoms which are
reflected in the spectroscopic measurements. Further measurements are recommended to
analyze the system in greater detail which was not possible due to the time limitations of
the three months stay at IBM.

5.4 Novel subgap structure in asymmetric superconducting tun-
nel junctions

For more than 40 years the subgap structure of superconducting–insulating–superconduct-
ing (SIS) tunnel junctions has been in the focus of experimental and theoretical investiga-
tions [217, 218]. Due to the difficulties of planar junctionsto clearly manifest Andreev re-
flections, break-junction experiments were used extensively [183, 219, 220, 221]. In break-
junction experiments, the coupling between both superconductors is varied continuously,
a necessity for a thorough understanding of Andreev reflections [222, 223, 224, 225] and
Josephson supercurrent [166]. However, break-junctions are thus far limited tosymmetric
tunnel junctions, in which the superconductors have equal gap energies.

On the other hand,asymmetrictunnel junctions are of interest because they are predicted
to show new spectroscopic features due to the loss and the opening of new Andreev reflec-
tion processes [226, 227]. Asymmetric tunnel junctions canbe realized by STM techniques
by using different gaps in the tip and sample, and the coupling between the superconductors
can be varied by changing the tip-sample distance [185, 160,186]. STM techniques have
the additional advantage that they may be extended to studylocally how the presence of
magnetic structures as small as a magnetic adatom in the SIS junction influences the multi-
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Figure 5.19:dI/dV spectra observed atT = 0.56 K between a superconducting sample and
tip with nearly equal gaps (∆1 = 1.47 meV,∆2 = 1.27 meV) showing Andreev reflections
for different junction resistances. The peak evolving atVT = 0 is due to the Josephson
supercurrent. The dotted lines are a guide for the eye marking characteristic features in the
spectra. The spectra are shifted vertically with respect toeach other for better visibility.

ple Andreev reflections [228] as we will discuss in section 5.5. So far, however, STM has
only been used to detect Andreev reflections in symmetric tunnel junctions [156, 186].

Here we present SIS measurements on asymmetric niobium tunnel junctions made by
controlling the size of a superconducting microcrystal attached to a normal conducting tip as
described in section 5.1.1. Due to finite size effects [229, 230] of the tip-attached microcrys-
tal, its superconducting energy gap is reduced with respectto the bulk sample value. Novel
peaks in thedI/dV spectra at energies of±|∆1−∆2| arise at low junction resistances when
the difference between∆1 and∆2 is sufficiently large. This surprising spectral feature is
not due to thermal excitations of the quasi-particles but isexplained within the framework of
Andreev scattering (see section 5.1.3) and the concept of full counting statistics [231, 232].

Figure 5.19 shows a set ofdI/dV measurements using a tip with a superconducting gap
of ∆2 = 1.27 meV atT = 0.56 K and different values of the nominal junction resistance,
RT , which were determined outside the gap atVT = 5 mV. By successively reducing
the resistance and thereby increasing the coupling betweenthe two superconductors, we
observe the evolution of subgap conductance peaks at characteristic energies of±∆1, ±∆2

and±(∆1 + ∆2)/3. Also observed is the peak atV ≈ 0 corresponding to the Josephson
supercurrent, which will be discussed in more detail in section 5.6. These are the first
observations of Andreev reflections in asymmetric superconducting tunnel junctions, which
are predicted to occur at energies±∆1/n, ±∆2/n and±(∆1 + ∆2)/(2n + 1), wheren is
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Figure 5.20:dI/dV spectra similar to the measurements shown in figure 5.19, butobserved
at slightly higher temperature of 1.2 K and with a gap of the tip of ∆2 = 1.00 meV, i. e. a
ratio of∆2/∆1 = 0.68. Due to the higher temperature the subgap features are broader than
in figure 5.19. The spectra are shifted vertically by two units with respect to each other for
better visibility.

an integer [226]. The Andreev reflections representing the observed subgap peaks (n = 1)
are represented schematically in figure 5.23 (a)(i-iii).

Figure 5.20 shows a similar set ofdI/dV measurements using a tip with slightly smaller
superconducting gap of∆2 = 1.00 meV and a base temperature of1.2 K which is about
two times higher than the above described measurements. Similar to the data in figure 5.19,
we detect conductance peaks at the energies±∆1, ±∆2, and±(∆1 + ∆2)/3. Compared to
the measurements of figure 5.19, the peak intensity is decreased, especially for the curves
at lower junction resistancesRT . Additionally, the peaks are broaden which is a direct
consequence of the increased temperature.

In figure 5.21, the subgap structure observed for a tip with a gap ∆2 = 0.32 meV
≈ 0.21 × ∆1 is substantially different. While the peaks at±∆1 and±∆2 are still present,
the peaks at±(∆1 + ∆2)/3, corresponding to an energy of about±0.60 meV, are barely
visible. Surprisingly, peaks at±(∆1 − ∆2), corresponding to±1.15 meV, appear at lower
junction resistances. These new features are not present injunctions with a gap ratio closer
to one (figure 5.19 and 5.20). Notice thateVT = ∆1 − ∆2 does not correspond to any
threshold voltage of a multiple Andreev reflection process,and thus the nature of these
peaks must be different from the peaks discussed above.

In order to clarify the origin of this novel spectral feature, we measured the temperature
dependence at constant junction resistance, which is shownin figure 5.22 (a). As the temper-
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Figure 5.21: Full lines:dI/dV spectra measured between a Nb sample (∆1 = 1.47 meV)
and a tip with a small gap (∆2 = 0.32 meV) at 0.56 K and different junction resistances.
Dashed lines: Results of the single-channel multiple Andreev reflection theory of reference
[225]. The transmission coefficientτ is determined by the correspondingRT . Vertical lines
and arrows: A guide for the eye to mark a new feature at±(∆1 − ∆2).

ature increases, all features smear out and the supercurrent peak as well as the peaks at∆1

and∆2 diminish. Above approximately 1.5 K, the height of the peak at ∆1 −∆2 increases
significantly due to thermally activated tunneling of single quasiparticles [173, 174], while
below 1.5 K the intensity of the peak stays constant indicating that at low temperatures the
novel peak is not due to thermal excitation of quasiparticles. The structure of thedI/dV
spectrum with the characteristic peak ateV = ∆1 + ∆2 is still visible at a temperature
of 3 K in contradiction to a critical temperature ofTC = 2.1 K for a BCS superconductor
with ∆ = 0.32 meV. Figure 5.22 (d) shows the unusual temperature behaviorof ∆2, which
is presumably due to the small size of the microcrystal [233]. In spite of this anomalous
behavior, thedI/dV spectra of the tips measured against a Cu(111) sample could be well
described by the standard tunnel formula assuming a bulk BCSdensity of states for the tip.
An example is shown in figure 5.22 (c) for a tip with a gap of0.41 meV atT = 0.56 K.

Using the known gaps∆1 and∆2 from sample and tip, the temperature, and the junc-
tion resistance as parameters, we have calculated the conductance using the single-channel



5.4 Novel subgap structure in asymmetric superconducting tunnel junctions 99

0 1 2
V

T
 [mV]

0

1

0

1

0

1

0

1

0

1

dI
/d

V
 [1

/R
T
]

0.55 K

1.0 K

1.5 K

1.82 K

3.0 K

(a)

(d)

∆1+∆2
experiment

∆1−∆2

(c)

(b)R
T
=50 kΩ

0.55 K

1.0 K

1.5 K

1.82 K

3.0 K
T= T=

-4 -2 0 2 4
V

T
 [mV]

0
0.5

1
1.5

2

dI
/d

V
 [1

/R
T
]

0 1 2 3
T [K]

0
0.1
0.2
0.3
0.4

∆ 2 [m
eV

]

0 1 2
V

T
 [mV]

0

1

0

1

0

1

0

1

0

1

∆1−∆2

∆1+∆2
calculation
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of the superconducting tip gap∆2. Full line: BCS calculation.
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Figure 5.23: Schematic representation of the most pronounced multiple Andreev reflections
in asymmetric superconductor-insulator-superconductortunnel junctions [(a):∆2/∆1 ≈
0.8, (b): ∆2/∆1 ≈ 0.4] and their threshold: (i): AteV ≥ ∆2 an electron (e) tunnels
from the left superconductor into the right superconductorand is reflected into a hole (h)
by creating a Cooper pair in the right superconductor. (ii):At eV ≥ ∆1 a hole tunnels
from the right superconductor into the left superconductorand is reflected into an electron
annihilating a Cooper pair in the left superconductor. (iii): Two-step process ateV ≥
(∆1 + ∆2)/3 involving the tunneling of 3 particles and the creation of a Cooper pair in
the right and the annihilation in the left superconductor. (iv): Special case of the two-step
process shown in (iii), where the left Andreev reflection takes place just inside the gap of
the left superconductor. This case is only possible in junctions with∆2/∆1 ≤ 0.5.

multiple Andreev reflection theory of reference [225] (Figure 5.21 dashed curves).12 In the
calculation we only consider the dissipative current, and therefore the supercurrent peak
does not appear in the simulation. Moreover, for the figures 5.21 and 5.22 we have used a
small imaginary part of the energy (δ = 0.01∆1) to simulate the voltage modulation of the
experiment and the finite lifetime of the quasiparticles (see equation 5.6). Notice that the
theory reproduces the peak structure of the data and specifically the feature at∆1 − ∆2.
However, most of the peaks appear to be more pronounced in thecalculation, which we
attribute in part to the fact that the Nb microcrystal attached to the tip is not a perfect BCS
superconductor, as we assume in the theory (see for instancethe difference between mea-
surement and BCS-fit in figure 5.22 (c) and (d)). On the other hand, following reference
[219], we have performed fits including several conduction channels, but in this case it did
not improve the quality of the agreement.

12This was done in collaboration withJ. C. Cuevas, University of Karlsruhe.
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Figure 5.24: Calculated current contributionsIn to the overall tunneling currentIsum (full
line) of multiple Andreev reflections atn-th order in a junction with∆2/∆1 = 0.21 and a
transmission coefficient ofτ = 0.2 at a temperature of 0 K using a full counting statistics
simulation. The arrows and the vertical lines mark energieswhere peaks in the spectrum
occur.

For the simulation in figure 5.22 (b) we calculate thedI/dV spectra with a BCS-like
spectrum of the superconducting sample and the measured∆2(T ) (figure 5.22 (d)) for the
tip. There is a good overall agreement, although the peak at∆1 is clearly much higher in
the theory.

To get a deeper understanding of the origin of the new peak at∆1 − ∆2 we use the
concept of full counting statistics . As shown in reference [231], the total current,Isum, can
be written as a sum of the individual contributions of the Andreev reflections of different
order, i.e.

Isum =
∑

n

In. (5.21)

Here,In is the current contribution of a tunneling process involving the transfer ofn electron
charges and the occurrence ofn− 1 Andreev reflections, and it can be expressed as

In(V ) =
2e

h

∫ eVT

0
nPn(V,E) dE, (5.22)

wherePn(V,E) is the probability of then-order Andreev reflection process. The proba-
bilities can be obtained by means of a generalization to the asymmetric case of the recipe
described in reference [231]. In figure 5.24 we plot the totalcurrent and the main con-
tributions In for a junction with a gap ratio∆2/∆1 = 0.21. We assume zero tempera-
ture and a transmission coefficient ofτ = 0.2, which corresponds to a junction resistance
RT = h

2e2
1
τ = 64.5 kΩ, with h

2e2 = G−1
0 = 12906 Ω as the inverse of the quantum conduc-

tance. The peak at∆1 − ∆2 originates mainly from the large increase ofI3 at this voltage.
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Figure 5.25: Full counting statistics calculation of thedI/dV -signal in an energy range
between0 ≤ eV ≤ 2∆1 between two superconductors with different gap ratios∆2/∆1 at
a temperature ofT = 0 K and a transmission coefficient of the junction ofτ = 0.25. The
intensity is coded in color (see inset). Peaks at∆1, ∆2, and∆1 + ∆2 are visible for all
gap ratios, while the peak at∆1 − ∆2 only exists for a ratio∆2/∆1 ≤ 0.5 and the peak at
(∆1 + ∆2)/3 diminishes for a ratio∆2/∆1 < 0.3.

As illustrated in figure 5.23 (b)(iv), such an increase is dueto the fact that foreV ≥ ∆1−∆2

the two Andreev reflections involved in this process can occur inside the gaps, which im-
plies an enhancement of their probability (see figure 5.6, section 5.1.3). Order 4 processes
also contribute strongly to the feature at∆1 − ∆2: The peak inI4 evident in figure 5.24
results in a marked change in the lineshape of thedI/dV peak at∆1 −∆2. So in short, we
propose that the peak at∆1 −∆2 is due to the enhancement of the probability of a multiple
Andreev reflection of order 3, which transfers 3 electron charges and involves two Andreev
reflections [165].

On the other hand, in contrast to the data shown in figures 5.19and 5.20, where the
ratio between the gaps is nearly equal, none of theIn produces a significant feature at
(∆1 + ∆2)/3. In particular, the jump inI3 is only about10−2 × Isum, because at the onset
of this process one of the two Andreev reflections takes placeoutside the gap, which makes
this process quite unlikely (see figure 5.23 (b)(iii)).
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Figure 5.25 presents in a color coded map the calculated Andreev reflections (dI/dV
maxima) for a superconducting-insulating-superconducting tunnel junction of transmission
coefficientτ = 0.25 as a function of normalized junction voltage for gap ratios∆2/∆1

between0.05 − 0.95. At an energy of∆1, ∆2, and∆1 + ∆2 Andreev reflections are
developed at all ratios. For a ratio≥ 0.3 a maximum at(∆1 + ∆2)/3 is clearly detectable,
while it diminishes for smaller ratios. A maximum at∆1 −∆2 occurs for all∆2/∆1 ≤ 0.5
and vanishes completely when the gap ratio exceeds 0.5. Thiscalculation is in excellent
agreement with our observed spectral features presented infigures 5.19, 5.20, and 5.21. For
the first two with a ratio of∆2/∆1 = 0.86 and0.68, three peaks inside the gap are located
at∆1, ∆2, and(∆1 + ∆2)/3, while the peak at∆1 − ∆2 does not exist. For the latter, we
observe the∆1 − ∆2 peak, while the peak at(∆1 + ∆2)/3 is very weak.

To summarize, using a low-temperature STM for the creation and characterization of
asymmetric superconducting tunnel junctions we gained newinsight into the physics of
Andreev reflections by analyzing in detail the observed subgap structure. In particular,
for junctions with a relatively small gap ratio∆2/∆1 < 0.5 we observe novel peaks at
eV = ±(∆1 − ∆2), which are not due to the thermal excitation of quasiparticles. All
observed subgap features can be understood as Andreev reflections within a full counting
statistics model.

5.5 Magnetic impurities in superconducting tunnel junctions

Measurements using a superconducting tip to probe single magnetic impurities on normal
conducting samples show only a convolution between the quasiparticle excitation spectrum
of the tip and the LDOS of the sample adatom system, as we have shown in section 5.2.2.
In particular, no influence on the superconducting gap was detected.

Nevertheless, interactions between the magnetic moment ofa single atom and the super-
conducting phase are expected and were detected in spectra taken on top of adatoms hosted
on a Nb sample which is a classical superconductor [157] and on top of Zn impurities on
a high-TC superconductor [234] by probing with normal conducting tips. In both works
midgap states inside the superconducting energy gap were detected localized at the position
of the magnetic atoms.

5.5.1 A Single Co atom attached to a superconducting tip

Here we present first results of a similar experiment using a superconducting tip on which
a single Co atom was attached to the apex by using atomic manipulation techniques [147].
These measurements are in a way the mirror experiments of thework of A. Yazdani et al.
[157] and were originally proposed by [206].

Figure 5.26(a) showsdI/dV spectra of the superconducting Nb tip prepared with a
single Co atom picked up onto the apex measured against a clean Cu(111) surface at a base
temperature ofT = 0.6 K. The spectra were taken at different tunneling currents between
1 nA and20 nA which corresponds to tunneling resistances betweenRT = 250 kΩ−5 MΩ.
They reveal three subgap peaks at energies of approximately−0.5, 0.0, and+0.45 meV.
The amplitude and the position of the peaks as well as the overall form of the spectra are
identical for all curves showing that the physical process which produces the midgap states
is only negligibly influenced by the coupling strength of thetunneling process.
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Figure 5.26:dI/dV spectra taken with a superconducting tip (∆ = 1.27 meV) on which
a Co adatom was attached at the apex. (a): Curves obtained at different setpoint currents
IT against a clean Cu(111) surface. (b): Spectrum of the same tip at IT = 1 nA after
the change of the position of the attached Co adatom reveals strong peaks originating from
midgap states at an energy of±∆/2 (blue curve). The intensity of the midgap states are
drastically reduced when the Co/Nb tip is placed over a second Co atom which is adsorbed
on the Cu(111) surface (red curve). Tunneling parameters:VT = −5 mV, Vm = 71 µV,
T = 0.6 K
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While the stability of the tip with an attached Co atom is quite good and allows one
to perform measurements using tunneling resistances down to a few hundred kΩ, the exact
position of the Co atom and the local environment on the apex remains unknown. Different
sites of the Co adatom on the tip apex result in strongly changed spectra. This is clearly
seen in figure 5.26 (b) where the spectrum of a similar tip is plotted as a blue curve. This
tip shows much stronger peaks at±0.64 meV, while atVT = 0 a dip is detected instead of
a peak as seen in the spectra of figure 5.26 (a).

While in the previous measurements of [157] the subgap peak structure was only seen
when subtracting the unperturbed BCS-like spectrum of the tip from the measured data,
the spectra of both tips in figure 5.26 reveal clearly detectable midgap states directly in the
dI/dV curves without further manipulation. We attribute the stronger pronouncing partly
to the much lower temperature used in the presented work.

Using the model described in [206], we can assign the symmetrical appearance of the
midgap peaks to two spin-polarized states localized at

ǫ1,2 = ± α∆√
1 + α2

, (5.23)

with ǫ1,2 = ±0.64 meV as the position of the midgap states resulting in anα = 0.577 for a
superconducting tip with∆ = 1.27 meV. The splitting is the result of an exchange coupling
between the magnetic moment of the adatom and the paired quasiparticles [235, 236].

J. Šmakov et al.could simulate the results of the earlier experiment [157] by character-
izing the exchange interactionW between the impurity and the conduction electrons of the
host Nb sample and the on-site potentialU , whereby both energies determine the parameter
α [206]. Here, we have not performed this analysis due to the unreproducibility of the tip
spectrum.

The appearance of the spin-polarized states can be additionally explained by introduct-
ing a spin-mixing angleΘ which describes the rotation of the quasiparticle spin at the mag-
netic adatom [228]. Within this description, the position of the midgap states are given
by

ǫ1,2 = ±∆ cos

(
Θ

2

)

, (5.24)

leading to a spin-mixing angle ofΘ = 2
3π for the presented data of figure 5.26 (b).

There exists another interesting result: Using the tip withthe attached Co atom to mea-
sure thedI/dV spectum on top of asecondsingle Co adatom supported on the Cu(111)
surface reveals strongly suppressed midgap states (see redcurve in figure 5.26 (b)). This
result is surprising considering the obtained spectrum of Co on Cu(111) using acleansu-
perconducting Nb tip in which the Kondo resonance was clearly detected (see figure 5.10
in section 5.2.1). The reduced intensity of the midgap states atǫ1,2 can be understood by
assuming similar spin-polarized states in the sample as in the apex of tip and aantiferro-
magneticcoupling between the two Co adatoms. Thus, the formation of the midgap states
is suppressed.

5.5.2 Localized states in a superconducting junction induced by a Co atom

While the reproducibility is not given in the case of superconducting tips with an attached
magnetic adatom, but magnetic atoms in superconducting junctions are of interest for the
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clarity, all curves are shifted vertically with respect to each other. The arrows mark midgap
states inside the gap.

understanding of the interactions between superconductivity and localized magnetic mo-
ments, we performed measurements between a superconducting Nb sample on which a low
quantity of Co adatoms were dosed and a superconducting tip.

The spectra obtained in such superconducting–magnetic adatom–vacuum–supercon-
ducting (SMIS) junctions are presented in figure 5.27. The bottom curve, plotted in green,
is measured at a lateral distance of at least2 nm from any Co-adatoms at a relatively high
tunneling resistance ofRT = 2.5 MΩ. It reveals the quasiparticle gap of2(∆1 +∆2) width
and strong peaks at±(∆1 +∆2) due to the convolution between the quasiparticle excitation
spectra (equation 5.6) of tip (∆1 = 1.47 meV) and sample (∆2 = (0.95 ± 0.05) meV) as
discussed in section 5.1.3.

The set of blue curves are taken on top of a Co adatom at successively reduced tun-
neling resistancesRT . They reveal a sequence of peaks located inside the gap. Increasing
the coupling between the tip and the sample, i. e. reducingRT , shifts the peak energies
closer to zero while new peaks occur (see colored arrows). All peaks appear symmetrically
aroundEF but with variable intensities. This is especially given forthe peaks closest to
EF marked with blue arrows which are barely visible at negativetunneling voltages. The
peak position scales thereby almost linear with the transmission coefficient,τ = 1

G0RT
(see

figure 5.28 (a)).
To rationalize the observations, we will focus on the curve taken atRT = 2.5 MΩ

at first. At this tunneling resistance the two superconductors are only weakly coupled,
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Figure 5.28: (a): Energy of the peaks found in figure 5.27. Thelines mark the linearity with
the transmission of the junctionτ . (b): Calculated spin-mixing angleΘ for the data in (a)
except for the low energetic square points.

and two shoulders are detected at an energy of±2.07 meV. These energies correspond
approximatively to the positions one would expect if the Co adatom on the Nb sample
produced a spectum similar to the one shown in figure 5.26 withmidgap states located at
ǫ ≈ EF ± 1 meV and a BCS-like spectrum of the tip. Due to the convolutionof the LDOS
of the tip and the sample (see equation 2.9 on page 8) peaks at±(∆2 + ǫ) ≈ ±2 meV
should appear. But while the spectra in the measurements with a normal conductor as
one electrode stayed unchanged at higher setpoint current (see figure 5.26 (a)), the peak
positions in the SMIS measurements change remarkably at lower tunneling resistances,
i. e. increased tunneling current, as shown in figure 5.27. Especially, the observation of
peaks at energies with an absolute valuesmallerthan the superconducting gap energy of the
probing tip (see blue arrows in figure 5.27) clarifies that theunderlying process must be an
interaction includingbothsuperconductors.13

Remarkably, the previously detected appearance of peaks insuperconducting–insu-
lating–superconducting junctions due to Andreev reflections processes at the fixed energies
given by±∆1/n, ±∆2/n, and±(∆1 + ∆2)/(2n + 1) (see section 5.4) are not observed.
Additionally, no supercurrent peak arises at low tunnelingresistances. These observations
clearly indicate that the magnetic Co adatom has a strong influence on the interaction be-
tween both superconductors.

While it is possible to calculate the spin-mixing angleΘ with equation 5.24 for the peaks
at energies outsite the gap width∆2, when assuming the above mentioned assumption of
a simple convolution of the quasiparticle spectrum of tip with midgap states in the sample
(see figure 5.28 (b)), this model can not explain the weak peaks marked with blue arrows
in figure 5.27. Additionally, notice that the low energy peaks are not explainable with an

13As long as the tip is only a probe for the sample states there can not exist anydI/dV signal in an energy
range±∆2. This is for example seen in the simulation of the IETS signalin section 5.3 and illustrated in figure
5.14.



108 Measurements with superconducting tips

Andreev scattering model which includes the additional spin-selective states induced by the
Co adatom leading to subgap states at(∆2 + ǫ)/n, (∆1 + ǫ)/n, and2ǫ/n (n ∈ Z) [228].

Nevertheless, the observed spin-mixing angleΘ for the most pronounced peaks points
towards a variable0 → π transition of the magnetic adatom depending only on the coupling
between both superconductors [237, 228].

5.6 Analyzing the supercurrent

As discussed in the theoretical part for superconducting-insulating-superconducting tunnel-
ing (see section 5.1.4), not only quasiparticles but additionally Cooper pairs can cross the
junction leading to a Josephson supercurrent. IndI/dV measurements, the supercurrent is
detected as a sharp peak at zero voltage. This feature is clearly visible in the subgap struc-
ture of figures 5.19–5.21 (section 5.4), especially in the curves obtained at low tunneling
resistances.

5.6.1 Experimental findings

To get a deeper insight into this phenomenon, we performed high resolution spectroscopic
measurements between a superconducting tip with a gap widthof ∆2 = 1.27 meV and
the Nb sample (∆1 = 1.47 meV). To achieve energy resolutions of a fewµeV, all exper-
iments were done with a setup that eliminated all sources of electronically and thermally
generated noise as far as possible. Thus, the experiments where performed at the lowest
attainable base temperature ofT = 0.55 K and by recording directly theI−V curves with-
out a modulation voltage added to the applied tunneling voltage. Additionally, all electrical
instruments and devices which were not essential to performthe experiment and data ac-
quisition were switched off, disconnected from the power-line, and removed from the STM.
With this preparation the influences of magnetic and electric stray-fields on the obtained
data were minimized.

The electrical wiring, together with the output impedanceRB of the voltage generator,
the input impedanceRC of the I − V converter, and the HF-filters between the tip and
sample on one side, and the voltage generator andI − V converter on the other side results
in an overall serial dc-resistivity ofRS = 4.3 ± 0.1 kΩ (see the simplified circuit diagram
of the electrical set-up in figure 5.29 (a)). To eliminate thevoltage drop onRS , the raw
data points (VB , IT ) have been corrected to obtain the true junction voltageVJ using the
equation

VJ = VB −RSIT (VB).14 (5.25)

Figure 5.30 shows a set ofI − V curves taken at different tunneling resistancesRT .
For each value ofRT the forward and backward pass of the voltage sweep from−1.5 mV
to +1.5 mV are shown. Slightly different forward and backward curves at the lowest tun-
neling resistances and at higher voltages are due to small drifts in the tip sample distance.

14Usually, this voltage drop is automatically corrected by the data acquisition software (using the so called
“smart” mode) by applying a slightly higher voltage to the junction depending on the actually measured tunnel-
ing currentIT . This clever correction must fail when the differential junction conductivitydI/dV approaches
infinite values as it is possible in Josephson junctions.
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Figure 5.29: (a): A Josephson tunnel junction represented by the⊲⊳ symbol in a simplified
electronic set-up of the STM. A voltageVB is applied over aRC network to one electrode
(for example the sample), while the current is detected on the second electrode (for example
tip) and processed in a current-voltage converter to a voltage proportional to the initial
tunneling currentIT . (b): Simplified electromagnetic resistively shunted junction (RSJ)-
model of the environment in which the Josephson junction is embedded and which is used
in the simulations.

These small changes of less than 3% during the acquisition time of about1 minute mean a
variation of the tip sample distance of approximatively1 pm (see equation 2.1 on page 4).
This variation is very small and is a proof of the extraordinary stability of the apparatus as
well as of the superconducting tip. The tunneling resistivity RT was calculated by using
the setpoint current at an applied voltage ofVB = −5 mV before opening the feedback
loop and performing the sweep. The internal resistanceRS was taken into account for this
calculation.

All curves are symmetrical to the origin. With the exceptionof the data set obtained
at RT = 4600 Ω, all spectra show characteristic steps at the voltagesVJ ≈ ±0.9 mV
andVJ ≈ ±1.25 mV which correspond to the threshold energies of a multiple Andreev
reflection process at±∆2 and±(∆1 + ∆2)/3 (see chapter 5.1.3). The absence of these
features in the curves with the lowest junction resistance and the almost linear slope (except
for the supercurrent branch) which corresponds to the adjustedRT , indicates that the tip
during this recording was no longer in tunneling distance but in electrical contact with the
surface. Nevertheless, the junction still shows tunnelingbehavior atRT = 8200 Ω which is
sufficiently smaller than the lowest resistance for which a single channel atomic junction is
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Figure 5.30:I − V curves of a superconducting-insulator-superconducting junction at dif-
ferent setpoint resistivitiesRT . All spectra are recorded atT = 0.55 K. Inset: The maximal
dc-supercurrent over junction resistivity shows aR−2 behavior. (The curve corresponding
toRT = 46 kΩ is not shown.)

still in the vacuum tunneling regime and which is given approximatively by the inverse of

the quantum conductanceG−1
0 =

(
2e2

h

)−1
= 12906 Ω [219]. Thus, we have to assume that

the atomic tunneling contact between both Nb electrodes hasat least2 − 3 channels which
contribute to the tunneling current. This assumption is in agreement with break-junction
measurements [221].

As expected, all curves show a zero-voltage current which reaches a maximum value
Imax before it switches to the dissipative branch. The maximal dc-supercurrent can be
calculated from the junction resistance with the empiricalequation

Imax = (2.2 ± 0.2) ×R−2.04±0.08
T

[
Ω2.04∓0.08A

]
(5.26)

in good agreement to the data as shown in the inset of figure 5.30. The obtained max-
imal supercurrents are much smaller than the critical supercurrentI0 calculated with the
Ambegaokar equation 5.16 (for a comparison see table 5.2 on page 117). Additionally,
equation 5.16 predicts a maximal supercurrent which scaleswith R−1

T and not with the ex-
perimentally obtainedR−2

T . These findings can only be explained in a junction model which
includes the electromagnetic environment of the STM and thefinite temperature (section
5.6.2).

Figures 5.37, 5.38, and 5.39 (pages 121–123) exhibit blow-ups of the positive super-
current branches for junction resistances of8.2 kΩ, 10.3 kΩ, and16 kΩ, respectively. The
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top panels of the figures show the raw data as they were obtained by the experiments, i. e.
without the correction ofRS . Starting from the origin by increasing the voltage, a linear
progression of the current with a slopedI/dV = 1/RS is detected which reaches its max-
imum and drops than suddenly to smaller values (black dots).A similar jump occurs again
at slightly higher bias voltage. While this double step structure is clearly visible in the mea-
surements withRT = 8.0 kΩ andRT = 10.2 kΩ, it is barely detectable in the curve taken
at a junction resistance ofRT = 16 kΩ.

This double step structure is also detected in the backward sweep (red dots), but it
appears at different energies leading to a hysteresis loop which is clearly visible in figures
5.37 and 5.38, but only slightly evolved in figure 5.39.

The curves shown in the lower panels are obtained after correcting the data with equa-
tion 5.25. The appearance of the first step is easily understood by the load-line of the voltage
generator together with the serial resistorRS and the negative differential resistance regime
which follows the maximal current. Figure 5.31 shows a simulated supercurrent curve using
an equation of the form;

I(V ) = A
V

V 2 + V 2
P

, (5.27)

which was used to describe the supercurrent in STM experiments with Pb–vacuum–Pb junc-
tions [185, 238]. We obtain a curve similar to the one measured atRT = 8 kΩ (figure 5.37)
with the empirical parametersA = 2.31 µAV andVP = 32 µV. For the explanation of the
load-line induced jump in the supercurrent the meaning and derivation of equation 5.27 is
not crucial and will be addressed in section 5.6.2.

Whereas for each applied bias voltageVB infinite pairs of junction voltageVJ , and
currentI values are available which fullfill equation 5.25, and whichare located on the
load-line as shown in figure 5.31 (black lines), there exist points of instability in the system.
Approaching the origin from negative bias voltage, such a point of instability is reached in
the example atVB = −0.227 mV. IncreasingVB above this point leads to an abrupt jump
of the currentI and the junction voltageVJ (arrow in figure 5.31). At the positiveI − V
branch a jump occurs too, but here atVB = 0.255 mV, i. e. at slightly higher absolute value.

To conclude, the first jump and the hysteresis, which are visible in all raw data, are
effects of the finite serial resistanceRS . Some scattered data points in the lower part of fig-
ures 5.37–5.39 which are visible after the correction are due to the relatively long response
time of the current detection system and are artifacts. A perfect voltage generator together
with a serial resistorRS → 0 would lead to jumpless curves without hysteresis. Neverthe-
less, only the first jump is understood with the model presented here. The simple equation
5.27 together with the load-line argument is not adequate todescribe the appearance of the
second jump.

Additionally, it is important to mention that in break-junction experiments the junction
is usually driven in constant current mode which hinders theobservation of the detailed
I − V curves close to zero voltage presented here (see figure 5.32). Especially, to my
knowledge there is no literature available that has observed jumps whose positions scale
with the inverse junction resistance as detected in the lower panel of figures 5.37–5.39. The
observation of a step inI − V traces of Pb-PbO-Pb point-junctions [182] might have the
same origin as in our observations, but was not discussed by the authors.
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Figure 5.31: Simulation of the supercurrent in a Josephson junction using the equation
I(V ) = A V

V 2+V 2
P

[185, 238] withA = 2.32 µAV and VP = 32 µV to obtain a curve

similar to the data shown in figure 5.37 Due to the serial resistor RS which determines
the load-line of the voltage source some points on theI − V curve are unstable. For each
appliedVB, pairs of (I, VJ ) exist which fulfill equation 5.25(black lines). If the slope of the
supercurrent curve exceeds the slope of the load-line jumpsoccur which are indicated by
blue arrows.

5.6.2 Theoretical model

To include the electromagnetic environment, the resistively and capacitively shunted junc-
tion model (RCSJ-model) [239, 240], has been adapted to STM measurements following
the idea in [241].

The starting point is the simplified junction model drawn in figure 5.29 (b). It includes
an ideal voltage generatorVB and a noise sourceVnoise in which all thermally (Nyquist
noise of the resistors) and electronically generated noises are summarized. The complex
multipoles of the electrical environment is simplified by aRC combination parallel to the
Josephson junction, while the voltage drop is taken into account by the serial resistorRS .
According toKirchhoff’s law, the currentI can be written as the sum of the partial currents:

I = I|| + IC + IJ =
VJ

R||
+ C

dVJ

dt
+ I0 sin δ. (5.28)

Using equation 5.14, which describes the ac-Josephson effect, the voltageVJ can be elimi-
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Figure 5.32: TypicalI − V curve measured in an Al break-junction experiment. The data
(dots) were obtained atT = 17 mK (inset atT = 370 mK) in constant current configuration
and show a large hysteresis. The system switches from the supercurrent branch atV ≈ 0
to the dissipative branch to a relatively highV ≈ 270 µV (dotted line with arrow). The
full line is a fit using full counting statistics with 3 independent tunneling channels and
transmission coefficients ofτ1...3 = 0.52, 0.26, 0.26. The critical supercurrent is calculated
to I0 = 25.3 ± 0.4 nA. Figure and data are taken from [184].

nated leading to a differential equation of second order:

I = ϕ0C
d2δ

dt2
+
ϕ0

R||

dδ

dt
+ I0 sin δ. (5.29)

For small phase amplitudesδ mod 2π ≪ 1 the Josephson junction can be seen as a
linear inductanceL = ϕ0/I0 and equation 5.29 has the same structure as the well known
harmonic oscillator with damping:15

I

I0
= LC

d2δ

dt2
+

L

R||

dδ

dt
+ sin δ. (5.30)

The resonance frequency

ωγ
0 =

1√
LC

= =
2e

~

√

EJEC , (5.31)

and the quality factor

Q = R||

√

C

L
= G0R||

√

EJ

2EC
(5.32)

15The analogy to an inductance is of course limited. One has to keep in mind that for an electrical inductance
the characteristic equationVind = L dI

dt
connects the induced voltage with the time derivative of thecurrent

while the analogy presented here links the voltage with the time derivativedδ/dt of the superconducting phase
difference.
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Figure 5.33: The “tilted washboard model” of a Josephson junction. (a): At I = 0 the
“particle” has its stable configuration atδ mod 2π = 0. (b): For0 < I < I0 the particle
which might gain some thermal energy has a higher probability to move downhill than
uphill. (c): When the currentI exceeds the critical currentI0 the particle can run downhill
only damped by the viscosity of the medium.

determines the Josephson junction. The ratios between the Josephson binding energyEJ =
~

2e2 I0, the electrostatic charging energyEC = e2

2 C
−1, and the thermal energykBT are

governing the dynamics at finite temperature.
The Josephson binding energyEJ gives thereby an energy scale for the coupling be-

tween the different phases of the two superconducting electrodes. It depends linearly on
the maximal supercurrentI0 (equation 5.16) and is directly related to the superconducting
order parmeters∆1,2 of the two superconductors and the junction normal state resistance
RT [180].

The electrostatic charging energyEC is the necessary energy to change the number
of electrons on the capacitorC by one. This capacity is very low in the case of small
junctions such as those given in STM between the tip and the sample. For a junction with
an internalC ≈ 2 fF the charging energyEC ≈ 50 µeV is of the order ofkBT with T as
the temperature of the experiment.16

A different analogy can be drawn between the description of the Josephson junction
as in equation 5.30 and a particle of “mass”~2

4e2C, moving in a potential landscape that
reminds one of a tilted washboard [242, 173] with:

U(δ) = −EJ cos δ − ~I

2e
δ. (5.33)

The particle is hindered by a “viscosity” proportional to~
2

4e2R
−1
|| and can performBrownian

motion due to statistical excitation given by the noise source in figure 5.29(b).
When only a small currentI is applied, i. e. the washboard is only slightly tilted (figure

5.33 (b)), the system stays mainly in one well of the potential landscape with an averageδ

16Note that the capacities of the external filterRC-networks (see figure 5.29 (a)) are not part of this capacity
because they are only weakly coupled to the junction in the frequency rangeωγ

0 ≈ 1010 Hz in which the
charging and discharging of the junction takes place.
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given by the Josephson equationI = I0 sin δ (equation 5.13). Due to the noise term, statis-
tical fluctuation exist which lead the particle to move in a preferred direction and produces
an average voltage〈V 〉 = ϕ0

〈
dδ
dt

〉
6= 0.17

By increasing the currentI over the critical supercurrentI0 , the system will be in the so
called “running state” (figure 5.33). The current is still governed by the averageI0 〈sin δ〉
whereby the voltage〈V 〉 determines the average speed of the particle.

To calculate the dynamic behavior of the junction includingthe noise term is difficult
and only analytically solvable under restricted assumptions. As it was shown byP. Joyez et
al. in [241], this can be done by assuming the following simplifications:

• While EJ andEC are of the same order of magnitude, the electromagnetic envi-
ronment provided by the leads presents an impedance of the order of the vacuum

impedance, i. eR|| / Z0 =
√

µ0

ǫ0
∼= 377 Ω ≪ G−1

0 . Thus, the quality factor is

Q≪ 1, i. e. the junction is at the plasma frequencyωγ
0 highly damped.

• Coulomb Blockade effects are irrelevant because the environment can charge the ca-
pacitance much faster than the Josephson current.

• The capacitanceC (figure 5.29 (b)) is very small, so that the first term in equation
5.29 can be neglected (resistively shunted junction (RSJ) limit).

• The noise source can be described with an effective temperatureTeff originating from
perfectly randomized Nyquist noise in the resistorR|| and thus obeys the relation
〈Vnoise(t)Vnoise(t

′)〉 = 2kBTeffR||δ(t − t′), whereδ(t) is here the delta distribution
and not the phase difference.

• The detected voltageVJ is heavily damped so that the junction is in the adiabatic limit
and the dynamic ofδ can be solved assumingVJ = 〈VJ〉.

The results in [241] were calculated for break-junction experiments in which the system
is usually driven in constant-current mode. For our needs ofa mainly constant-voltage
driven junction, the equations for the detected currentI and voltageVJ are slightly adapted
and result in:

I(ξ) = I0 〈sin δ〉 = I0ℑ







I1−iη

(
EJ

kBTeff

)

I−iη

(
EJ

kBTeff

)






, (5.34)

VJ(ξ) = R|| (I(ξ) − ξ) . (5.35)

With the shorthand

η =
EJ

kBTeff
ξ, (5.36)

ℑ(x) as the imaginary part ofx, andIα(β) as the modified Bessel function of first kind and
of the complex orderα taken atβ.

17〈. . .〉 has here the meaning of a time average.
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Figure 5.34: SimulatedI − V curves for different EJ
kBTeff

values using the equations 5.34
and 5.35 of the resistively shunted junction model.

In the limitEJ ≪ kBTeff the equations 5.34 and 5.35 can be reduced to the more simple
form [243, 244]:

I(VJ ) =
1

2
I2
0R||

VJ

V 2
J +

(
2e
~
R||kBTeff

)2 , (5.37)

which we have already introduced in section 5.6.1 (equation5.27). Here, the use of this
approximation is not recommended because in our experimentsEJ & kBTeff .

Figure 5.34 showsI−V curves calculated by using equations 5.34 and 5.35 for different
EJ

kBTeff
values. The critical currentI0 is only achieved in the limit EJ

kBTeff
→ ∞, while the

maximal current diminishes rapidly with increasingTeff .
This set of equations allows us to perform least-square fits to the measured data when

including an additional currentIind given by:

Iind(VJ) =

{
αG0VJ , VJ ≤ Vjump

0, VJ > Vjump
(5.38)

to incorporate the detected second jump. While the fit was notstable when letting the
position ofVjump also be a variable parameter, this value was fixed at the observed position,
while the remaining parameters were varied using a fitting routine.

For each experimentally measured data point(VJ , I), the routine searches iteratively
ξ until VJ(ξ) of equation 5.35 corresponds to the junction voltage at thispoint and than
calculatesI(ξ). Performing this procedure for all data points, we get calculated (VJ , I)
data for a set of parameters, which were than be optimized to reach maximal agreement
with the experimental data.
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tunneling resistanceRT

8.2 ± 0.1 kΩ 10.3 ± 0.1 kΩ 16.0 ± 0.1 kΩ

I0 (calc.) 287 ± 6 nA 229 ± 4 nA 148 ± 3 nA

Imax (exp.) 36.5 ± 0.5 nA 26.5 ± 0.5 nA 8.8 ± 0.2 nA

I ′0 = 1
3I0 (calc.) 96 ± 2 nA 76.5 ± 1.4 nA 49.3 ± 0.9 nA

Ifit
0 95.7 nA 76.2 nA 55 nA

E′
J = ~

2e2 I
′
0 (calc.) 197 ± 4 µeV 157 ± 3 µeV 101 ± 2 µeV

Efit
J = ~

2e2 I
fit
0 196.6 µeV 156.5 µeV 113 µeV

eVjump (exp.) 197 ± 3 µeV 156 ± 5 µeV 110 ± 10 µeV

τ∗ = 1
3R

−1
T G−1

0 (calc.) 0.52 0.42 0.27

α (fit) 0.43 0.35 0.20

R|| (fit) 242 Ω 246 Ω 245 Ω

Teff (fit) 1.2 K 1.4 K 2.0 K

Table 5.2: Calculated data from the experimental settings and parameters obtained by a
least-square fit of the superconducting-insulating-superconductingI − V curves.

The results of the best fits for the experiments with junctionresistivities ofRT =
8.2 kΩ, 10.3 kΩ, and16 kΩ are displayed as blue lines in the figures 5.37, 5.38, and 5.39.
The best parameter set can be found in table 5.2.

As already mentioned, the observed maximal supercurrentImax is much smaller than
theI0 calculated with equation 5.16. Even if we assume an increased effective temperature
in our apparatus, the experimentally observed data and the obtained fit parameters can not
be brought to agree with each other. But when assuming that the junction contains three
identical tunneling channels which is in agreement to findings in break-junction experiments
[221] and thus using a critical supercurrent ofI ′0 = 1

3I0, the obtained parameter for the best
fit of Ifit

0 agrees very well with the calculatedI ′0. Additionally, the results of the fit forTeff

andR|| agree with the model. As discussed above,R|| should be of the order of the vacuum
impedance (Z0 ≈ 377 Ω) which was the case (R|| ≈ 0.65×Z0). The effective temperature
Teff is with 1.2 − 2 K only slightly higher than the base temperature of the apparatus and
suggests an overall noise factor ofF = Teff

Tbase
= 2 − 3 which is quite acceptable compared

to similar measurements where the noise factor wasF ≈ 3.5 [185].
Using I ′0 and calculatingEJ lead to a remarkable coincidence between the jump po-

sition and the Josephson energy. In the two measurements with a tunneling resistance
RT = 8.2 kΩ, and10.3 kΩ they agree with each other within an error of< 1%, while
a difference of about10% is found in the measurement withRT = 16 kΩ, mainly due to
the difficulty to determine the exact position ofVjump. Remarkably, the error between both
values is reduced to≈ 3% when using the fitted value ofIfit

0 to calculateEfit
J .
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E Ehν = 2eV

(b)(a)

Figure 5.35: A Cooper pair which crosses the tunnel junctionat an applied voltage emits a
photon of an energy~ω = 2eV (a). The same photon can induce a second transition of a
Cooper pair from the left to the right electrode (b).

While the underlying physical process stays unclear and up to now similar results were
to my knowledge never reported, we can only present some ideas about the origin of this
additional current and its sharp drop atEJ . The following observations should be reflected:

• The presumably linear dependence ofIind on the junction voltage with a slope of
α ≈ τ∗, i. e. the additional channel acts like an ohmic channel parallel to the junction
with a transmissivity of the same order as the major channel.

• The drop in current at junction voltages|eVJ | ≥ EJ .

Self-induced tunneling

Since early measurements on superconducting tunnel junctions it has been known that
Cooper pairs which tunnel across a biased junction emit microwaves atω = 2eVJ/~ (figure
5.35 (a)) [191, 179]. Additionally, it is well known and proven by several experiments that
an externally applied HF-field leads to Shapiro steps in theI − V curve due to microwave
induced tunneling [188, 189, 190]. Thus it might be possible, that the observed extra current
is due to self-induced tunneling (see figure 5.35 (b))

To be more precise, the applied junction voltageVJ induces an oscillation of the system
variableδ (the phase difference between the two superconducting states), resulting in an ac-
current with a frequency of the phase oscillation. This alternating current is the source of an
emitted electromagnetic wave with the same frequency. In the model outlined in figure 5.33
the average speed of the “particle” determines the photon energy. Similar to the situation
given in a Laser device, the photon can now be absorbed by the junction or stimulate the
coherent emission of a second photon [179]. The absorption of a photon with an energy
of E = 2eV results in a reduction of the current due to the tunneling of aCooper pair
in opposite direction to the applied junction voltage; i. e.the “particle” in figure 5.33 (b) is
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Ε
∆2

∆1

Figure 5.36: Schematic view of an asymmetric junction at lowbias. Supercurrent can not
only be transported over Andreev bound-states (dashed lines) but additionally by Andreev
scattering of electrons originating from continuum statesat−∆2 ≥ E ≥ −∆1 (full lines).

moved by2π uphill, while the stimulated emission of a second photon leads to an additional
dc-current which is superimposed to the current originating from RSJ-model.

To get more incidents of stimulated emission than of absorption, it is known that “pop-
ulation inversion” is a necessary condition, i. e. a greateroccupancy in the upper than in the
lower level of the system. In the experiments presented here, the currentI transports Cooper
pairs to the energetically higher left superconductor in figure 5.35, leading to a population
invertion.

At a junction voltageeVJ ≥ EJ the photon energy is higher than the coupling energy
between both superconductors. Thus, we expect that the two superconductors are no longer
firmly coupled and self-emission processes are inhibited leading to the sharp drop inIind.

Andreev reflected continuum states

In section 5.1.4 the charge transport which leads to the supercurrent was discussed in terms
of Andreev bound-states. While forsymmetricjunctions a supercurrent atVJ ≈ 0 can
only be transported via Andreev reflection processes between the Andreev bound-states as
illustrated in figure 5.7, the situation inasymmetricjunctions is different.

Figure 5.36 sketches the possible transports in a tunnel junction with ∆2 < ∆1. Not
only reflection processes into Andreev bound-states contribute to the overall current but
additionally quasiparticles originating from occupied states between the energy interval
−∆1 < E < −∆2 which are reflected at the boundary can lead to an non negligible
current contribution [245, 246, 247].

Unfortunately, this additional channel closes for voltages higher than the difference
between the two superconducting gaps, i. e. at|eVJ | = ∆2 − ∆1. Nevertheless, it cannot
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be completely ruled out that the gap in the microcrystal changes for different tunneling
resistances and that it is only by coincidence that the closing appears at approximatively
EJ .

Interestingly, break-junction measurements have so far never reported similar jumps.
Break-junctions are usually driven by applying a constant-current to the junction and record-
ing the junction voltage in a four-terminal measurement configuration to eliminate errors
due to the voltage drop along the wiring. During the rising current sweep (IJ = 0 → ±I)
and after exceeding the maximal supercurrent the system jumps from almost zero voltage to
a point relatively far on the dissipative branch (see figure 5.32). At opposite sweep direction
(IJ = ±I → 0) an increase in the current can principally not be detected.Thus, the ob-
served jump atEJ might be detectable in break-junctions when performing measurements
in constant-voltage mode.

5.6.3 Summary

To summarize, the presentedI − V measurements between two unequal superconductors
are in general well reproduced by the RSJ-model except for the second jump in the raw
data. While the first jump and the hysteresis originates fromthe experimental setup which
lead to an unavoidable serial resistor, and thus to a no longer completely voltage-driven
measurement, the second jump has a different origin which isnot yet well understood.
Additionally, the RSJ-model only works well if it is assumedthat the junction contains
several transport channels in which the major channel has a transmissivity of exactly1/3 of
the sum of all transmission coefficients.

While we cannot completely exclude that the observed secondjump has its origin in
external sources of error not controlled by our experiment,we want to state that we have
observed these jumps in all measurements when the junction resistivity was set to suffi-
ciently low values with at least three differently preparedsuperconducting tips.

Further investigations are recommended, because the jump occurs surprisingly at an
energy which is identified as the Josephson coupling energy,the energy which characterizes
the Josephson effect between both superconductors.

Evidently, the extra currentIind (equation 5.38) we introduced “ad hoc” is only a suf-
ficient approximation to describe the data as long asEJ ≫ kBTeff . In theI − V curves
obtained atRT = 16 kΩ (figure 5.39) whereEJ ≈ kBTeff this approximation is obviously
no longer a good one.



5.6 Analyzing the supercurrent 121

0 0.1 0.2 0.3

bias voltage V
B
 [mV]

0

10

20

30

cu
rr

en
t I

 [n
A

]

0 0.1 0.2 0.3
junction voltage V

J
 [mV]

0

10

20

30

cu
rr

en
t I

 [n
A

]

Raw Data

Corrected with
R

S
=4.3 kΩ

E
J
 =0.197 mV

Figure 5.37: Blow-up of the forward (circles) and backward (triangles)I − V curves ob-
tained at a tunneling resistance ofRT = 8200 Ω. The top panel shows the uncorrected raw
data in which two jumps are clearly visible. These two jumps occur at different bias volt-
agesVB for the forward and backward sweep leading to hysteresis loops. After correcting
the data using equation 5.25 to compensate the voltage drop on the serial resistanceRS, the
spectra shown in the lower panel are obtained. Here, the firstjump can be explained by the
load line of the voltage source, while the origin of the second jump which occurs approxi-
mately at the Josephson energyEJ stays unclear. The data can reproduced with a fit using
the RSJ-model (dashed line) plus an additional linear term presumably due to stimulated
tunneling which abruptly stops atEJ (full line). For details see text.
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Figure 5.38: Same graphic as in figure 5.37 but for a junction resistivity ofRT = 10.3 kΩ.
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Figure 5.39: Same graphic as in figure 5.37 but for a junction resistivity ofRT = 16.0 kΩ.
The jumps and the hysteresis loop are only faintly visible due to an effective temperature
higher than the Josephson coupling energy (kBTeff > EJ ). For details, see text.
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