6 research outputs found

    Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts

    Get PDF
    The bacterium ‘Candidatus Liberibacter solanacearum’ is a recent plant pathogen of several crops in Solanaceae and Apiaceae and is associated with economically important diseases. The bacterium is a carrot seed borne pathogen that can also be transmitted from potato mother tubers and by psyllid vectors. The psyllid Bactericera trigonica Hodkinson was described carrying CaLso associated with vegetative disorders in carrot and celery crops in Spain and its competence to transmit this phloem-limited bacterium among vegetables is currently being investigated. Here electrical penetration graphs showed that B. trigonica fed in the phloem of carrot and celery and probed the phloem in potato, but not in tomato plants. The bacterium was efficiently transmitted to carrot and celery plants when either single B. trigonica or groups of ten fed on these species. An inoculation access period of 24 hours was sufficient for a single B. trigonica to transmit the bacterium to carrot (67.8%), celery (21.1%) and eventually to potato and tomato (6.0%). Higher transmission rates were obtained with 10 individuals on celery (100%), carrot (80%), potato (10%) and tomato (10%). Bactericera trigonica laid eggs, and the hatched nymphs develop into adult on carrot and celery, but not on potato and tomato. CaLso was detected in 20% of the eggs laid by females carrying the bacterium. The results confirmed that B. trigonica is a vector of the bacterium to carrot and celery, and it is discussed the potential role of this psyllid in the transmission of the pathogen to potato and tomato plants

    Search for reservoirs of `Candidatus Liberibacter solanacearum¿ and mollicutes in weeds associated with carrot and celery crops

    Full text link
    [EN] Currently, the main arthropod vectored pathogens associated with carrot and celery crop diseases are EiCandidatus Liberibacter solanacearumA ', Spiroplasma citri and different phytoplasma species. Mitigation strategies require elucidating whether these pathogens survive in the weeds of these Apiaceae crops, which can act as reservoirs. Weed surveys were conducted in a vegetative cycle (April to October 2012) in the spontaneous vegetation that surrounded crops affected by EiCa. L. solanacearumA ', S. citri and/or phytoplasmas. Sixty-three species of 53 genera that belong to 23 botanical families were collected in the main carrot and celery Spanish production area. Species were identified, estimating coverage and abundance, and conserved in herbarium. Samples were analysed by nested-PCR with universal primers for phytoplasmas detection, and were sequenced for identification purposes; by conventional PCR for S. citri and real-time PCR for EiCa. L. solanacearumA '. The only detected pathogens were EiCa. Phytoplasma trifoliiA ' (clover proliferation group 16Sr VI-A) in Amaranthus blitoides and Setaria adhaerens and EiCa. P. solaniA ' (stolbur group 16Sr XII-A) in Convolvulus arvensis. These pathogens were also sporadically detected in celery or carrot crops. Unexpectedly, neither EiCa. L. solanacearumA ' nor S. citri was detected in the weed samples, despite the relatively high prevalence of these pathogens (less than 66 % and 25 %, respectively) in the surveyed plots. This suggests that weeds do not play an epidemiological role as reservoirs in the spread of such organisms in the studied region. The use of pathogen-free seed lots and the control of vectors are crucial for preventing the introduction and spread of these economical important pathogens to new areas.This work has been supported by grant INIA (RTA2011-00142). G.R. Teresani was the recipient of a PhD grant from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Ministerio de Educacao, Brazil. This paper is dedicated to the memory of F.J. Villaescusa (1981-2011). The technical support of S. Sanjuan and J.C. Ferrandiz from Agricola Villena Coop. V. is acknowledged.Alfaro Fernández, AO.; Verdeguer Sancho, MM.; Rodríguez-León, F.; Ibañez, I.; Hernández, D.; Teresani, GR.; Bertolini, E.... (2017). Search for reservoirs of `Candidatus Liberibacter solanacearum¿ and mollicutes in weeds associated with carrot and celery crops. European Journal of Plant Pathology. 147(1):15-20. https://doi.org/10.1007/s10658-016-0984-915201471Alfaro-Fernández, A., Cebrián, M. C., Villaescusa, F. J., Hermoso de Mendoza, A., Ferrándiz, J. C., Sanjuán, S., & Font, M. I. (2012). First report of ˋCandidatus Liberibacter solanacearum´ in carrots in mainland Spain. Plant Disease, 96, 582.Bertaccini, A., & Duduk, B. (2009). Phytoplasma and phytoplasma disease: a review of recent research. Phytopathologia Mediterranea, 48, 355–378.Bertolini, E., Teresani, G. R., Loiseau, M., Tanaka, F. A. O., Barbé, S., Martínez, C., Gentit, P., López, M. M., & Cambrá, M. (2015). Transmission of Candidatus Liberibacter solanacearum in carrot seeds. Plant Pathology, 64, 276–285.Bové, J. M. (1986). Stubborn and its natural transmission in the Mediterranean area and the near east. FAO Plant Protection Bulletin, 34, 15–23.Bové J. M., Fos A., Lallemand J., Raie A., Ali Y., Ahmed N. (1988). Epidemiology of Spiroplasma citri in the old world. In: L. W. Timmer, S.M. Garnsey, L. Navarro, eds. Proceedings of the 10th International Organization of Citrus Virologist Conference, (295–299). Riverside, USA. (www.iocv.org/proceedings).Braun-Blanquet, J. (1932). Plant sociology: the study of plant communities (439 pp). New York: McGraw-Hill.Carretero, J. L. (2004). Flora arvense española (754 pp). Valencia: Las malas hierbas de los cultivos españoles. Phytoma Ed.Cebrián, M. C., Villaescusa, F. J., Alfaro-Fernández, A., Hermoso De Mendoza, A., Córdoba- Sellés, M. C., Jordá, C., Ferrándiz, J. C., Sanjuán, S., & Font, M. I. (2010). First report of Spiroplasma citri in carrot in Europe. Plant Disease, 94, 1264.Davis, R. M., & Raid, R. N. (2002). Compendium of Umbelliferous crop disease (110 pp).American Phytopathological SocietyEmber, I., Acs, Z., Munyaneza, J. E., Crosslin, J. M., & Kolber, M. (2011). Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Rusia. European Journal of Plant Pathology, 130, 367–377.Fialová, R., Valová, P., Balakishiyevá, G., Danet, J. L., Safarová, D., Foissac, X., & Navratil, M. (2009). Genetic variability of stolbur phytoplasma in anual crop and wild plant species in South Moravia. Journal of Plant Pathology, 91, 411–416.Fujiwara, K. (1987). Aims and methods of phytosociology or "vegetation science", Papers on plant ecology and taxonomy to the memory of Dr. Satoshi Nakanishi. pp. 607–628.Green, M. J., Thompson, D. A., & MacKenzie, D. J. (1999). Easy and efficient DNA extraction from Woody plants for the detection of Phytoplasmas by polymerase chain reaction. Plant Disease, 83, 482–485.Gundersen, D. E., & Lee, I. M. (1996). Ultrasensitive detection of phytoplasmas by nested- PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.Haapalanien, M. (2014). Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of Applied Biology, 165, 172–198.Herbario de la Universidad Pública de Navarra. (2012). http://www.unavarra.es/herbario. Accessed 2012.Herbario Virtual del Mediterráneo Occidental. (2012). http://herbarivirtual.uib.es/. Accessed 2012.Flora Ibérica. (2012). http://www.floraiberica.org/. Accessed 2012.Jomantiene, R., Maas, J. L., Dally, E. L., Davis, R. E., & Postman, J. D. (1999). First report of clover proliferation Phytoplasma in strawberry. Plant Disease, 83, 967.Jomantiene, R., Postman, J. D., Montano, H. G., Maas, J. L., Davis, R. E., & Johnson, K. B. (2000). First report of clover yellow edge Phytoplasma in Corylus (hazelnut). Plant Disease, 84, 102.Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology, 48, 1153–1169.Lee, I. M., Dane, R. A., & Black, M. C. (2001). First report of a member of Aster yellows Phytoplasma group and of clover proliferation Phytoplasma group associated with onion in Texas. Plant Disease, 85, 448.Lee, I. M., Bottner, K. D., Miklas, P. N., & Pastor-Corrales, M. A. (2004). Clover proliferation group (16SrVI) subgroup a (16SrVI-A) Phytoplasma is a probable causal agent of dry bean Phyllody disease in Washington. Plant Disease, 88, 429–429.Mateo, G., & Crespo, M. (2009). Manual Para la determinación de la flora valenciana (4ª ed.507 pp). Alicante: Librería Compás.Ed.Murphy, A. F., Cating, R. A., Goyer, A., Hamm, P. B., & Rondon, S. I. (2014). First report of natural infection by ‘Candidatus Liberibacter solanacearum’ in bittersweet nightshade (Solanum dulcamara) in the Columbia Basin of eastern Oregon. Plant Disease, 94, 1425.Nejat, N., Vadamalai, G., & Dickinson, M. (2011). Spiroplasma citri: a wide host range phytopathogen. Plant Pathology Journal, 10, 46–56.Schneider, B., Seemüller, E., Smart, C. D., & Kirkpatrick, B. C. (1995). Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In S. Razin & J. G. Tully (Eds.), Molecular and diagnostic procedures in mycoplasmology (Vol. Vol.I, pp. 369–380). San Diego: Academic Press.Teresani, G., Bertolini, E., Alfaro-Fernandez, A., Martínez, C., Tanaka, F. A., Kitajima, E., Rosello, M., Sanjuan, S., Ferrandiz, J. C., López, M. M., Cambra, M., & Font-San-Ambrosio, M. I. (2014). Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopahology, 104, 804–811.Teresani, G., Hernández, E., Bertolini, E., Siverio, F., Marroquín, C., Molina, J., Hermoso de Mendoza, A., & Cambra, M. (2015). Search for potencial vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops. Spanish Journal of Agricultural Research, 13, e10–002.Flora Vascular. (2012). http://www.floravascular.com/. Accessed 2012.Weed Science Society of America. (2012). http://wssa.net/weed/weed-identification/. Accessed 2012.Yokomi, R. K., Mello, A. F. S., Saponari, M., & Fletcher, J. (2008). Polymerase chain reactionbased detection of Spiroplasma citri associated with citrus stubborn disease. Plant Disease, 92, 253–260

    ‘Candidatus Liberibacter Solanacearum’ Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae

    Get PDF
    © 2020 by the authors.Bacteria belonging to ‘Candidatus Liberibacter spp.’ are associated with various severe diseases in the five continents. The African citrus psyllid Trioza erytreae (Hemiptera: Triozidae) is an efficient vector of citrus huanglongbing-HLB disease, absent in the Mediterranean basin. This psyllid is currently present in the islands and mainland Portugal and Spain, where the prevalence of ‘Ca. Liberibacter solanacearum’ (CaLsol) associated to a carrot disease is high. Trioza erytreae normally feeds on citrus plants but has also been observed on other crops. It would be a great concern to the Mediterranean citrus industry if T. erytreae could transmit this bacterium from carrots to citrus and cause disease; therefore, the transmission of CaLsol from carrot plants to citrus plants was experimentally assessed. Although CaLsol was initially detected on receptor citrus plants in transmission assays by dodder and budding, the infection was not established. The feeding behavior by electrical penetration graphs and oviposition of T. erytreae on carrot plants versus citrus plants was evaluated. Trioza erytreae only reached the phloem in citrus plants. However, it was able to acquire CaLsol from infected carrots but unable to transmit it to citrus plants. CaLsol was detected in some carrot plants immediately after 7 and 14 days (inoculation access period), but it was not detected after one month. Trioza erytreae was unable to complete its life cycle on carrot plants. In conclusion, the efficient vector of bacteria associated to huanglongbing was unable to transmit CaLsol from carrot to citrus plants, but it acquired and transmitted the bacterium from carrot to carrot plants with low efficiency.This research was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA RTA2011-00142-C2 and INIA E-RTA2014-00008-C4. M.Q.-G.d.C. is recipient of a 2017-2020 Ph.D. grant from INIA. G.R.T. was recipient of Ph.D. grant 2010-2014 from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministério da Educação, Brazil. E.B. was recipient of an INIA-CCAA 2011-2016 contract from Ministerio de Ciencia e Innovación, Spain.Peer reviewe

    Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts

    No full text
    The bacterium ‘Candidatus Liberibacter solanacearum’ is a recent plant pathogen of several crops in Solanaceae and Apiaceae and is associated with economically important diseases. The bacterium is a carrot seed borne pathogen that can also be transmitted from potato mother tubers and by psyllid vectors. The psyllid Bactericera trigonica Hodkinson was described carrying CaLso associated with vegetative disorders in carrot and celery crops in Spain and its competence to transmit this phloem-limited bacterium among vegetables is currently being investigated. Here electrical penetration graphs showed that B. trigonica fed in the phloem of carrot and celery and probed the phloem in potato, but not in tomato plants. The bacterium was efficiently transmitted to carrot and celery plants when either single B. trigonica or groups of ten fed on these species. An inoculation access period of 24 hours was sufficient for a single B. trigonica to transmit the bacterium to carrot (67.8%), celery (21.1%) and eventually to potato and tomato (6.0%). Higher transmission rates were obtained with 10 individuals on celery (100%), carrot (80%), potato (10%) and tomato (10%). Bactericera trigonica laid eggs, and the hatched nymphs develop into adult on carrot and celery, but not on potato and tomato. CaLso was detected in 20% of the eggs laid by females carrying the bacterium. The results confirmed that B. trigonica is a vector of the bacterium to carrot and celery, and it is discussed the potential role of this psyllid in the transmission of the pathogen to potato and tomato plants

    The psyllid fauna (Hemiptera: Psylloidea) of vegetable fields in Brazil

    Get PDF
    ABSTRACT Some psyllids transmit 'Candidatus Liberibacter solanacearum' (Lso), the causal agent of devastating plant diseases of cultivated Solanaceae and Apiaceae. The recent detection of Bactericera cockerelli and Lso in Ecuador seriously threatens these crops in South America. There, neither the role of native psyllids in the Lso epidemiology nor the psyllid fauna of vegetables are known. With the aim to identify potential vectors and risk scenarios for the spread of Lso in South America, a survey of the psyllid fauna of Solanaceae and Apiaceae crops and associated weeds was conducted in Brazil. Samples were taken at 29 localities in four states. A total of 2857 specimens were sampled, representing at least 37 species of 23 genera and seven families. The most frequent species on carrot, chilli pepper and potato were Russelliana solanicola, R. capsici and Isogonoceraia divergipennis, respectively. Immatures of R. capsici were found on chilli pepper and of R. solanicola on carrot and potato, confirming these plants as hosts. The two psyllid species have been suspected previously to transmit plant pathogens of unknown identity. Russelliana solanicola is one of the few polyphagous species. Here the species is reported for the first time from carrot. Recent collections in Rio Grande do Sul suggest that Solanum laxum represents the original host of R. capsici, which subsequently shifted to chilli pepper. Both, adaptation to agricultural crops and the possibility of ability to transmit pathogens, make the two Russelliana species dangerous potential vectors of Lso and other plant pathogens in South America

    Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops

    Get PDF
    ‘Candidatus Liberibacter solanacearum’ has recently been reported to be associated with vegetative disorders and economic losses in carrot and celery crops in Spain. The bacterium is a carrot seedborne pathogen and it is transmitted by psyllid vector species. From 2011 to 2014 seasonal and occasional surveys in carrot, celery and potato plots were performed. The sticky plant method was used to monitor the arthropods that visited the plants. The collected arthropods were classified into Aphididae and Cicadellidae, and the superfamily Psylloidea was identified to the species level. The superfamily Psylloidea represented 35.45% of the total arthropods captured on celery in Villena and 99.1% on carrot in Tenerife (Canary Islands). The maximum flight of psyllid species was in summer, both in mainland Spain and the Canary Islands, reaching a peak of 570 specimens in August in Villena and 6,063 in July in Tenerife. The main identified psyllid species were as follows: Bactericera trigonica Hodkinson, B. tremblayi Wagner and B. nigricornis Förster. B. trigonica represented more than 99% of the psyllids captured in the Canary Islands and 75% and 38% in 2011 and 2012 in Villena, respectively. In addition, Trioza urticae Linnaeus, Bactericera sp., Ctenarytaina sp., Cacopsylla sp., Trioza sp. and Psylla sp. were captured. ‘Ca. L. solanacearum’ targets were detected by squash real-time PCR in 19.5% of the psyllids belonging to the different Bactericera species. This paper reports at least three new psyllid species that carry the bacterium and can be considered as potential vectors
    corecore