2,332 research outputs found
Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula
La expansión de la energía renovable marina es una importante alternativa para la reducción de las emisiones de gases de efecto invernadero. Sin embargo, en Europa, la alta penetración de la energía eólica marina introduce intermitencia y variabilidad de energía en la red eléctrica existente. La energía solar fotovoltaica marina es otra alternativa tecnológica en consideración en los planes de descarbonización. Sin embargo, las futuras variaciones en el viento, la temperatura del aire o la radiación solar debido al cambio climático tendrán un gran impacto en los recursos de energía renovable.
En este contexto, este estudio se centra en la evaluación de la energía marina en la costa de la Península Ibérica occidental, una región europea que abarca Portugal y la parte noroccidental de España. Utilizando una amplia fuente de datos de 35 simulaciones de un proyecto de investigación llamado CORDEX, este estudio investiga la complementariedad de las fuentes de energía eólica y solar marina con el objetivo de mejorar la estabilidad del suministro de energía de esta región hasta 2040.
Aunque se ha demostrado que el recurso de energía eólica marina es mayor que el recurso fotovoltaico solar a escala anual, ambos recursos renovables mostraron una variabilidad significativa en energía a lo largo de la Península Ibérica occidental. Cuando se combinan ambas fuentes renovables, la estabilidad del recurso energético aumenta considerablemente a lo largo del año.
El esquema propuesto de combinación de energía eólica y solar se evalúa mediante un método de clasificación de rendimiento llamado Delphi, teniendo en cuenta la estabilidad, el recurso, el riesgo y los factores económicos. El índice de clasificación total aumenta cuando la estabilidad del recurso se mejora mediante la consideración de la producción híbrida de energía eólica-fotovoltaica solar, especialmente a lo largo de las aguas cercanas a la costa.The expansion of marine renewable power is a major alternative for the reduction of greenhouse gases emissions. In Europe, however, the high penetration of offshore wind brings intermittency and power variability into the existing power grid. Offshore solar photovoltaic power is another technological alternative under consideration in the plans for decarbonization. However, future variations in wind, air temperature or solar radiation due to climate change will have a great impact on both renewable energy resources. In this context, this study focusses on the offshore energy assessment off the coast of Western Iberia, a European region encompassing Portugal and the Northwestern part of Spain. Making use of a vast source of data from 35 simulations of a research project called CORDEX, this study investigates the complementarity of offshore wind and solar energy sources with the aim of improving the energy supply stability of this region up to 2040. Although the offshore wind energy resource has proven to be higher than solar photovoltaic resource at annual scale, both renewable resources showed significant spatiotemporal energy variability throughout the western Iberian Peninsula. When both renewable resources are combined, the stability of the energy resource increased considerably throughout the year. The proposed wind and solar combination scheme is assessed by a performance classification method called Delphi, considering stability, resource, risk, and economic factors. The total index classification increases when resource stability is improved by considering hybrid offshore wind-photovoltaic solar energy production, especially along the nearshore waters.Ministerio de Economía, Industria y Competitividad | Ref. FJCI-2017-32577Agencia Estatal de Investigación | Ref. PID2020-113245RB-I00Fundação para a Ciência e a Tecnologia | Ref. UIDB/50017/2020Fundação para a Ciência e a Tecnologia | Ref. UIDP/50017/2020Xunta de Galicia | Ref. ED431C 2021/4
Suitability of wave energy converters in northwestern Spain under the near future winter wave climate
Marine renewable energies can play a key role by reducing the dependency on fossil fuels and, therefore, mitigating climate change. Among them, it is expected that wave energy will experience rapid growth in the upcoming decades. Thus, it is important to know how wave climate will change and how suitable the wave energy converters (WECs) will be to the new wave conditions. This paper aims to evaluate the capability of four different WECs—a WaveRoller type device (WRTD), Atargis, AquaBuoy and RM5—to extract wave energy on the Northwest coast of Spain (NWCS). The analysis was performed using the high-resolution wave data obtained from the Simulating Waves Nearshore (SWAN) model over the near future winters (2026–2045). The energy
output (PE), the power load factor (ε), the normalized capture width (NCw) and the operational time (OT) were analyzed. According to these parameters, among the devices that work for intermediate-deep waters, Atargis would be the best option (PE=1400 ± 56 kW, ε =55.4 ± 2.2%, NCw=35.5 ± 4.1% and OT =84.5 ± 3.3%). The
WRTD would also be a good option for shallow nearshore areas with PE=427 ± 248 kW, ε =12.8 ± 7.4%, NCw = 48.9 ± 9.6% and OT = 88.7 ± 18.9%. A combination of Atargis and WRTDs is proposed to make up the future wave energy farms on the NWCS.Xunta de Galicia | Ref. ED431C 2021/44Ministerio de Ciencia e Innovación | Ref. PID2020-113245RB-I00Agencia Estatal de Investigación | Ref. TED2021-129479A-100Ministerio de Ciencia e Innovación | Ref. IJC2020-043745-IAgencia Estatal de Investigación | Ref. PRE2021-097580Universidade de Vigo/CISU
Current Progress and Future Perspectives on the Use of Bacillus clausii
Bacillus clausii is a probiotic that benefits human health. Its key characteristics include the ability to form spores; the resulting tolerance to heat, acid, and salt ensures safe passage through the human gastrointestinal tract with no loss of cells. Although B. clausii has been widely used for many decades, the beneficial properties of other probiotics, such as Lactobacillus spp. and Bifidobacterium spp., are better disseminated in the literature. In this review, we summarize the physiological, antimicrobial, and immunomodulatory properties of probiotic B. clausii strains. We also describe findings from studies that have investigated B. clausii probiotics from the perspective of quality and safety. We highlight innovative properties based on biochemical investigations of non-probiotic strains of B. clausii, revealing that B. clausii may have further health benefits in other therapeutic areas
Different approaches to analyze the impact of future climate change on the exploitation of wave energy
The increment of the share of renewable energies in the global mix implies that all renewable energies must be exploited. In this sense, it is necessary to make significant research and investment effort in the particular case of wave energy to reach the degree of maturity of other marine energies in the near future. Apart from the inherent factors that hinder the development of wave energy, such as the non-existence of a market-leading type of capturing device, uncertainties about the available future resource also hamper its growth. In this article, a review of the procedures followed in the literature to deal with the future wave energy resources and their subsequent exploitation is described. These procedures include the evaluation of the best future atmospheric models to drive wave models, the different downscaling techniques to evaluate the resource in large regions with high spatial resolution, and the analysis of the variability of the future energy resource and its future exploitability in a certain region taking into account different types of devices. Additionally, the current state of the art of previous studies dealing with future wave energy resources for different locations worldwide is described. Despite the difficulties involved in studying future wave energy resources, the high technological readiness level of the offshore wind industry, the creation of power generation farms with combined technologies, and the growth of marine aquaculture in the coming years could generate synergies that provide the definitive impulse to achieve the necessary technological development.Agencia Estatal de Investigación | Ref. PID2020‐113245RB‐I00Agencia Estatal de Investigación | Ref. TED2021-129479A-I00Xunta de Galicia | Ref. ED431C 2021/44Agencia Estatal de Investigación | Ref. IJC2020-043745-IAgencia Estatal de Investigación | Ref. PRE2021-097580European Cooperation in Science and TechnologyUniversidade de Vigo/CISU
Evaluating the economic viability of near-future wave energy development along the Galician coast using LCoE analysis for multiple wave energy devices
The economic profitability of future wave energy production along the Galician coast is assessed by analyzing the Levelized Cost of Energy (LCoE) under different Capital Expenditure (CapEx) scenarios and two discounts rates (5% and 10%). Wave resources for the near future under the RCP8.5 scenario are downscaled using SWAN, providing up to 75 m spatial resolution in coastal areas. The study’s goal is to enhance the cost-effectiveness by selecting the most suitable wave energy converter (WEC) for each location. Fourteen WECs operating at different depths are considered. This analysis reveals that the Atargis device boasts the lowest LCoE for 64.2% of the coastal area, mainly in deep waters, with an LCoE of 77 €/MWh. In addition, the Oyster and Wave Dragon devices exhibit the lowest LCoE for 12.4% and 15.0% of the coastal area, respectively, excelling in shallow waters and near the coast, with values of 50 €/MWh and 97 €/MWh. These findings demonstrate the profitability of wave energy production along the Galician coast, even when considering a more conservative CapEx of 3 M€/MW, resulting in a cost of 140 €/MWh. This conclusion takes into account the evolving electricity prices in Spain, which reached 0.2068 €/kWh in the second half of 2023Xunta de Galicia | Ref. ED431C 2021/44Agencia Estatal de Investigación | Ref. PID2020-113245RB-I00Agencia Estatal de Investigación | Ref. TED2021-129479A-100Agencia Estatal de Investigación | Ref. IJC2020-043745-IEuropean Cooperation in Science & Technology | Ref. COST Action CA17105 WECANetUniversidade de Vigo/CISU
Plasmatic level of neurosin predicts outcome of mild cognitive impairment
<p>Abstract</p> <p>Background</p> <p>Mild Cognitive Impairment (MCI) is a disorder considered to be a transitional stage from health to dementia. Diagnosis of dementias at these early stages is always troublesome because the pathophysiologic events leading to dementia precede clinical symptoms. Thus, the development of biomarkers that can be used to support the diagnosis of dementias at early stages is rapidly becoming a high priority. We have recently reported the value of measuring plasmatic levels of neurosin in the diagnosis of Alzheimer's disease (AD). The aim of this study is to determine whether measuring plasmatic concentration of neurosin is a valuable test to predict progression of MCI.</p> <p>Methods</p> <p>Plasmatic neurosin concentrations were measured in 68 MCI patients and 70 controls subjects. Blood samples were obtained at the beginning of the study. Sixty six patients diagnosed with MCI were observed for 18 months. In 36 patients a second blood sample was obtained at the endpoint.</p> <p>Results</p> <p>The mean value of plasmatic neurosin concentration differs significantly between MCI patients who converted to Dementia with vascular component, those who converted to AD, or those who remained at MCI stage. The relative risk of developing Dementia with vascular component when neurosin levels are higher than 5.25 ng/ml is 13 while the relative risk of developing mild AD when neurosin levels are lower than 5.25 ng/ml is 2. Increases in the levels of neurosin indicate progression to Dementia with vascular component.</p> <p>Conclusion</p> <p>The measurement of plasmatic neurosin level in patients diagnosed with MCI may predict conversion from MCI to Dementia with vascular component. A single measurement is also valuable to estimate the risk of developing AD and Dementia with vascular component. Finally, repeated measurement of plasmatic neurosin might be a useful test to predict outcome in patients with MCI.</p
Photovoltaic power resource at the Atacama Desert under climate change
The Atacama desert is a region with exceptional conditions for solar power production. However, despite its relevance, the impact of climate change on this resource in this region has barely been studied. Here, we use regional climate models to explore how climate change will affect the photovoltaic solar power resource per square meter (
) in Atacama.
Models project average reductions in
of 1.5% and 1.7% under an RCP8.5 scenario, respectively, for 2021-2040 and 2041-2060. Under RCP2.6 and the same periods, reductions range between 1.2% and 0.5%. Also, we study the contribution to future changes in
of the downwelling shortwave radiation, air temperature and wind velocity. We find that the contribution from changes in wind velocity is negligible. Future changes of downwelling shortwave radiation, under the RCP8.5 scenario, cause up to 87% of the decrease of
for 2021-2040 and 84% for 2041-2060. Rising temperatures due to climate change are responsible for drops in
ranging between 13%–19% under RCP2.6 and 14%–16% under RCP8.5.Xunta de Galicia | Ref. ED431C 2021/44Universidad de Vigo/CISUGMinisterio de Ciencia e Innovación | Ref. IJC2020-043745-IMinisterio de Universidade
The Impact of Postnatal Systemic Steroids on the Growth of Preterm Infants: A Multicenter Cohort Study
Postnatal steroids, often used to prevent and treat bronchopulmonary dysplasia, may influence the growth of preterm infants, although data are scarce in the literature. This is a multicenter cohort study including surviving preterm infants <32 weeks at birth (n = 17,621) from the Spanish Neonatal Network SEN1500 database, without major congenital malformations. Linear regression models were adjusted for postnatal steroids, respiratory severity course (invasive mechanical ventilation at 28 days), progression to moderate-severe bronchopulmonary dysplasia (O2 at 36 weeks), length of stay, sex, gestational age and z-scores at birth. A subgroup analysis depending on the timing of administration, ventilation status at 28 days and moderate-severe BPD diagnosis was also performed. Overall, systemic postnatal steroids were not independently associated with poorer weight gain (0.1; 95% CI: -0.05 to 0.2 g/kg/day), linear growth (0; 95% CI: -0.03 to 0.01 cm/week) or head circumference growth (-0.01; 95% CI: -0.02 to 0 cm/week). Patients who received steroids after 28 days or who were not O2 dependent at 36 weeks after having received steroids gained more weight (0.22; 95% CI: 0.04 to 0.4 and 0.2; 95% CI: 0.004 to 0.5 g/kg/day, respectively). Globally, systemic postnatal steroids had no significant adjusted effect on postnatal growth
Shoc2/Sur8 protein regulates neurite outgrowth
This is an openaccess
article distributed under the terms of the
Creative Commons Attribution License.-- et al.The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.GL, TG and LMD were recipients of fellowships from the Ministerio de Educación y Ciencia (MEC) (to GL, TG), and Fondo de Investigaciones Sanitarias (FIS) (to LMD). LSR
held a postdoctoral research contract from CIBERNED. This work was supported by FIS grant
(PI10/00815) to JLO; CIBERNED to MC; SAF2008-01951, Comunidad Autónoma de Madrid (CAM) SSAL-0202-2006-01 and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) to TI; FIS grant PI12/00775 and ISCIII-RETIC (Red Temática de Investigación Cooperativa en Cáncer) RD12/0036/0027 from the Instituto de Salud Carlos III to PSG; and FIS grants (PI09/0562 and PI13/00703), ISCIIIRETIC
(RD06/0020/0003 and RD12/0036/0021), and the Spanish Association Against Cancer
(AECC) to JMR.Peer Reviewe
- …