24 research outputs found

    Synthesis of a Fluorescent Conjugated Polymer in the Undergraduate Organic Teaching Laboratory

    Get PDF
    Fluorescent organic polymers are used in a wide range of applications, including explosive sensing, clean energy technologies, and biological detection schemes. However, such polymers are rarely synthesized in an undergraduate organic teaching laboratory, due to their air and moisture sensitivity. The synthesis of a fluorescent organic polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), is described for the upper-division undergraduate organic laboratory. This polymerization is accomplished using straightforward procedures to exclude air and moisture, without requiring the use of a glovebox or strict inert-atmosphere conditions. Once synthesized, the polymer is used for two applications, the fabrication of fluorescent thin films and the formation of organic conjugated nanoparticles, and leads to a number of pedagogical opportunities about polymerization, organic fluorescence, solid-state properties, and hydrophobic nanoparticle formation

    Sensitive and Selective Detection of Cesium via Fluorescence Quenching

    Get PDF
    Herein we report a robust and easy method for detecting cesium metal ion (Cs+) in partially aqueous solutions using the fluorescence quenching of 2,4-bis[4-(N,N-dihydroxyethylamino) phenyl]squaraine. This squaraine dye was found to be both highly sensitive (low limits of detection) and selective (limited response to other metals) for cesium ion detection. The detection is likely based on the metal complexing to the dihydroxyethanolamine moieties, which disrupts the donor-acceptor-donor architecture and leads to efficient quenching

    Electronic, Structural, and Catalytic Analyses of Iron Pincer Complexes and Methods for the Direct Functionalization of Lactide

    Get PDF
    Thesis advisor: Amir HoveydaChapter 1: A review of recent iron catalyzed cross coupling advances. Abstract: Herein, advances in iron catalyzed cross coupling from 2010-2015 are thoroughly reviewed. Newly developed protocols and the mechanistic work that has been conducted to gain understanding of these systems are discussed. Specific emphasis is placed on the techniques used for mechanistic investigations. Chapter 2: Cross coupling applications of pyridyl(diimine) iron complexes. Abstract: Versatile and redox noninnocent pyridyl(diimine) iron complexes were explored for catalytic ability in iron catalyzed cross coupling reactions. These complexes were found active for the coupling of benzyl halides and aryl Grignard reagents, producing moderate yields. Although active for the coupling of cyclohexyl chloride and aryl Grignard reagents, the catalytic ability of these complexes was not general for alkyl halides, and the majority of substrates readily underwent β- hydride elimination. Mechanistic studies indicated the role of PDIFe(I)Ph and PDIFe(0)(N2)2 as offcycle species. Additionally, these complexes were employed for the Suzuki-type coupling of alkyl halides with 1,1-bis(boronates), leading to the conclusion that the processes were instead base catalyzed. Chapter 3: Electronic structure analysis and catalytic applications of carbeno(diamidine) iron complexes. Abstract: Iron(II) pincer complexes carbeno(diamidine) iron dibromide [(CDA)FeBr2] and bis(N-heterocyclic carbene)pyridine iron dibromide [(CNC)FeBr2] were examined by magnetic circular dichroism and density functional theory studies to invesitgate the effect that NHC moieties have on electronic structure and bonding in tridentate pincer ligands. The increased Fe-C bonding and pincer-donating abilities that result from NHC incorporation have a direct impact on spin state and observed ligand fields. Additionally, the position of the NHC moiety on the tridentate ligand and the overall geometry of the molecule were found to effect the net donor ability of the pincers and the strength of the iron-pincer interactions. Three new variations of the CDA ligand were developed and evaluated for catalytic ability in olefin hydrogenation and atom transfer radical polymerization reactions. While iron CDA complexes were found to be mediocre catalysts for both transformations, a cobalt CDA dimer complex was developed that showed promising catalytic activity for olefin hydrogenation. Chapter 4: The direct functionalization of lactide. Abstract: In an effort to provide cyclic diesters that could generate useful and biodegradable polymers, the direct functionalization of lactide was pursued. Lactide undergoes ring opening under a wide range of conditions, and thus traditional methods used for the functionalization of lactones could not be employed here. Typical routes for the formation of cyclic diesters involve multi-step syntheses and low yielding cyclization reactions. Herein, C-H activation and soft enolization have been identified as promising avenues toward the direct functionalization of lactide. Palladium catalyzed C-H activation was not amenable for lactide, however, soft enolization techniques led to low yields of the desired functionalized product.Thesis (MS) — Boston College, 2017.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Chemistry

    Supramolecular Luminescent Sensors

    Get PDF
    There is great need for stand-alone luminescence-based chemosensors that exemplify selectivity, sensitivity, and applicability and that overcome the challenges that arise from complex, real-world media. Discussed herein are recent developments toward these goals in the field of supramolecular luminescent chemosensors, including macrocycles, polymers, and nanomaterials. Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores. State-of-the-art developments in the fields of polymer and nanomaterial sensors are also examined, and some remaining unsolved challenges in the area of chemosensors are discussed

    A Paper-Based Device for Ultrasensitive, Colorimetric Phosphate Detection in Seawater

    Get PDF
    High concentrations of certain nutrients, including phosphate, are known to lead to undesired algal growth and low dissolved oxygen levels, creating deadly conditions for organisms in marine ecosystems. The rapid and robust detection of these nutrients using a colorimetric, paper-based system that can be applied on-site is of high interest to individuals monitoring marine environments and others affected by marine ecosystem health. Several techniques for detecting phosphate have been reported previously, yet these techniques often suffer from high detection limits, reagent instability, and the need of the user to handle toxic reagents. In order to develop improved phosphate detection methods, the commonly used molybdenum blue reagents were incorporated into a paper-based, colorimetric detection system. This system benefited from improved stabilization of the molybdenum blue reagent as well as minimal user contact with toxic reagents. The colorimetric readout from the paper-based devices was analyzed and quantified using RGB analyses (via ImageJ), and resulted in the detection of phosphate at detection limits between 1.3 and 2.8 ppm in various aqueous media, including real seawater

    Environmental Application of Cyclodextrin Metal-Organic Frameworks in an Undergraduate Teaching Laboratory

    Get PDF
    Reported herein is a multidisciplinary laboratory experiment for advanced undergraduate students that includes elements of material synthesis, in the synthesis of cyclodextrin-containing metal–organic frameworks (CD-MOFs), and environmental chemistry, in the use of these MOFs for pollutant removal. This multiday laboratory experiment starts with the synthesis of cyclodextrin-containing metal–organic frameworks (CD-MOFs) using vapor diffusion crystal growth procedures, followed by the use of the CD-MOFs for a pollutant removal application. Specifically, the CD-MOFs were used for the removal of a methylene blue dye (a common mimic of aromatic pollutants) from an organic solution, with the monitoring of the success of the removal procedures using UV–vis spectroscopy. This experiment was implemented as part of a larger multiday unit, and undergraduate students were particularly engaged with and excited by the CD-MOF synthesis and methylene blue removal experimental modules. As a result, the decision was made to make these two components a stand-alone multidisciplinary laboratory experiment, the results of which are reported herein

    Synthetic β‐Cyclodextrin Dimers for Squaraine Binding: Effect of Host Architecture on Photophysical Properties, Aggregate Formation and Chemical Reactivity

    Get PDF
    Reported herein is the synthesis and application of three novel β‐cyclodextrin dimer hosts for the complexation of near infrared (NIR) squaraine dyes in aqueous solution. A series of eight different N‐substituted N‐methyl anilino squaraine dyes with variable terminal groups are investigated, with an optimal n‐hexyl‐substituted squaraine guest demonstrating binding constants orders of magnitude higher than the other squaraine–host combinations and comparable to literature‐reported systems. Moreover, hydrophobic complexation of the squaraine dyes with the β‐cyclodextrin dimer hosts causes drastic changes in the squaraine\u27s photophysical properties, propensity for aggregation and susceptibility to hydrolytic decay

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore