743 research outputs found

    Characterisation of a novel reverse-biased PPD CMOS image sensor

    Get PDF
    A new pinned photodiode (PPD) CMOS image sensor (CIS) has been developed and characterised. The sensor can be fully depleted by means of reverse bias applied to the substrate, and the principle of operation is applicable to very thick sensitive volumes. Additional n-type implants under the pixel p-wells, called Deep Depletion Extension (DDE), have been added in order to eliminate the large parasitic substrate current that would otherwise be present in a normal device. The first prototype has been manufactured on a 18 μm thick, 1000 Ω .cm epitaxial silicon wafers using 180 nm PPD image sensor process at TowerJazz Semiconductor. The chip contains arrays of 10 μm and 5.4 μm pixels, with variations of the shape, size and the depth of the DDE implant. Back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v, and characterised together with the front-side illuminated (FSI) variants. The presented results show that the devices could be reverse-biased without parasitic leakage currents, in good agreement with simulations. The new 10 μm pixels in both BSI and FSI variants exhibit nearly identical photo response to the reference non-modified pixels, as characterised with the photon transfer curve. Different techniques were used to measure the depletion depth in FSI and BSI chips, and the results are consistent with the expected full depletion

    Direct evidence for ferromagnetic spin polarization in gold nanoparticles

    Get PDF
    We report the first direct observation of ferromagnetic spin polarization of Au nanoparticles with a mean diameter of 1.9 nm using X-ray magnetic circular dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold magnetization is explored. Magnetization of gold atoms estimated by XMCD shows a good agreement with the results obtained by conventional magnetometry. This result is evidence of intrinsic spin polarization in nano-sized gold.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Coulomb and nuclear breakup of a halo nucleus 11Be

    Get PDF
    Breakup reactions of the one-neutron halo nucleus 11Be on Pb and C targets at about 70 MeV/u have been investigated by measuring the momentum vectors of the incident 11Be, outgoing 10Be, and neutron in coincidence. The relative energy spectra as well as the angular distributions of the 10Be+n center of mass have been extracted for both targets. For the breakup on Pb target, the selection of forward scattering angles is found to be effective to extract almost purely the first-order E1 Coulomb breakup component, and to exclude the nuclear contribution and higher-order Coulomb breakup components. This angle-selected energy spectrum is thus used to deduce the spectroscopic factor for the 10Be(0+) 2s_1/2 configuration in 11Be which is found to be 0.72+-0.04 with B(E1) up to Ex=4 MeV of 1.05+-0.06 e2fm2. The energy weighted E1 strength up to Ex=4 MeV explains 70+-10% of the cluster sum rule, consistent with the obtained spectroscopic factor. The non-energy weighted sum rule is used to extract the root mean square distance of the halo neutron to be 5.77(16) fm, consistent with previously known values. In the breakup with C target, we have observed the excitations to the known unbound states in 11Be at Ex=1.78 MeV and 3.41 MeV. Angular distributions for these states show the diffraction pattern characteristic of L=2 transitions, resulting in J^pi =(3/2,5/2)+ assignment for these states. We finally find that even for the C target the E1 Coulomb direct breakup mechanism becomes dominant at very forward angles.Comment: 14 pages, 7 figures, accepted for publication on Physical Review

    Polarizations and Nullcone of Representations of Reductive Groups

    Get PDF
    The paper starts with the following simple observation. Let V be a representation of a reductive group G, and let f_1,f_2,...,f_n be homogeneous invariant functions. Then the polarizations of f_1,f_2,...,f_n define the nullcone of k 0} h(t) x = 0 for all x in L. This is then applied to many examples. A surprising result is about the group SL(2,C) where almost all representations V have the property that all linear subspaces of the nullcone are annihilated. Again, this has interesting applications to the invariants on several copies. Another result concerns the n-qubits which appear in quantum computing. This is the representation of a product of n copies of SL2SL_2 on the n-fold tensor product C^2 otimes C^2 otimes ... otimes C^2. Here we show just the opposite, namely that the polarizations never define the nullcone of several copies if n <= 3. (An earlier version of this paper, distributed in 2002, was split into two parts; the first part with the title ``On the nullcone of representations of reductive groups'' is published in Pacific J. Math. {bf 224} (2006), 119--140.
    corecore